Math 194c: Topology and Geometry of 3-manifolds

Introduction

e This class is about compact 3-manifolds, for example: S3, T3 =8 xS xS! 2 xSt orthe
unit tangent bundle to a surface.

Fundamental Goal: Classify all compact 3-manifolds. What does classify mean? The ideal
classification is that of surfaces:

Theorem: Every compact connected 2-manifold without boundary is homeomorphic (or
diffeomorphic) to one of the following:

- (Orientable) The sphere, the torus or the connected sum of tori.

- (Nonorientable) The projective plane, or a connected sum of proj. planes.

The homeomorphism type of a surface is completely determined by its orientablity and its
Euler characteristic (in other words, its homology) which are easily computable from, say, a
triangulation.

The classification of 3-manifolds may or may not be possible (though it probably is). This
contrasts with dimensions = 4 where classification of manifolds is impossible.

* The reason classification is impossible in high dimensions is group theoretic. Finitely pre-
sented groups can’t be classified in any reasonable sense, and for any fixed n = 4 any finitely
presented group is 1 of some n-manifold. (Proof: For a f.p. group G build a finite 2-complex
K with 71 (K) = G. Now as n+1 =5, can embed K in R"*!. Let M be the boundary of a reg-
ular nbhd of K. Then M is a closed n-manifold and, since n =4, 1;M = 1; K = G.) A reason
finitely presented groups can't be classified is that there is no algorithm which can decide
if two finitely presented groups are isomorphic. In fact, there is no algorithm to decide if a
finitely presented group has any of the following properties: trivial, finite, free, nilpotent or
simple.

* This doesn’t mean you can’t say anything about high-dimensional manifolds—in fact high-
dimensional topology (n = 5) is arguably better understood than low-dimensional topology
(n =3,4), once you mod out by the fact that it’s impossible. In other words, fix some homo-
topy type K to get rid of the group theory and look at

{(M, f) | M is an n-manifold, f: M — K is a homotopy equivalence. }.

moded out by homeomorphism (or if you're studying smooth manifolds, diffeomorphism).
Often this set can be calculated with homotopy-theoretic methods (stable homotopy groups
of spheres, L-groups, surgery exact sequences...).

e Until the 2003 work of Perelman, the following basic question in 3-dimensions was un-
known:

Poincaré conjecture: Let M be a compact 3-manifold without boundary with ;M trivial.
Then M is homeomorphic to S°.



For a 3-manifold, 771 M trivial is equivalent to M homotopy equivalent to S3. So you have the
generalization:

Gen. Poincaré conjecture: Let M be a compact n-manifold without boundary homotopy
equivalent to S”. Then M is homeomorphic to S”.

In 1960 Smale proved this was true in dimensions n = 5. If you replace homeomorphism by
diffeomorphism the Generalized Poincaré Conjecture becomes false. For instance, Milnor
showed that S” has 28 distinct differentiable structures (in general, you can calculate the
number of smooth structures on S” using stable homotopy groups of spheres). In dim 4,
Freedman proved the gen. Poincaré around 1980. This illustrates how topology differs as we
change dimensions.

Geometry:

Every surface has a metric of constant curvature. Often these metrics are useful for solving
purely topological problems. As a toy example, let X be a surface of genus = 2 with some
fixed hyperbolic metric. Any homotopy class of simple closed curves in Z contains a unique
geodesic. If we want to study homotopy classes of curves, it is convenient to look at the
geodesic representatives since any two geodesics loops:

— either the same or meet transversely.

- meet in a minimal number of points (for their homotopy classes).

Here’s a couple of group-theoretic statements about G = 7,(Z) whose proofs use the fact
has a hyperbolic metric:

1. Gisresidually finite, that is, the intersection of all its finite-index subgroups is the iden-
tity subgroup.

2. Gissubgroup separable, aka LERE This means that given a finitely generated subgroup
H of G and an element g € G — H there exists a finite-index subgroup H' containing H
with g ¢ H'. The proof works by building the surface out of right-angled pentagons and
looking at the induced tiling of H?.

It would be nice if all manifolds had metrics of constant curvature, but in higher dimensions,
very few manifolds do. One reason for this is that any n-manifold M with a constant curva-
ture metric is a quotient of one of S”, E"” or H" by a group of isometries. So, for example,
m2(M) = 0 and hence e.g. §2 x §2 or CP? don't have such metrics. Also, because 71(M) is a
lattice in a Lie group, 71 (M) has solvable word problem. However, many finitely presented
groups do not have solvable word problem.

Could generalize constant curvature to locally homogeneous metrics, but still have solvable
word problem.

Around 1980 the theory of 3-manifolds was revolutionized by Thurston’s realization that
most 3-manifolds should have locally homogeneous metrics:

Geometrization Conjecture: Any compact 3-manifold can be cut into pieces along spheres
and tori so that each piece can be given one of the 8 geometric structures: S3, B3, H3, S2 xR,

H2 x R, Nil, Sol, SLyR.



As in dimension 2, the generic case is H3. If true, this conjecture would be a big step toward
classifying 3-manifolds. For instance, it implies that any 3-manifold group has solvable word
problem, and is residually finite. In 2003, Perelman announced a proof of the Geometriza-
tion Conjecture using Hamilton’s approach of Ricci flow.

« In dimension 2 a surface other than S? or RP? has many constant curvature metrics. It is easy
to see that the torus has a 2-dimensional space of flat metrics. For a surface of genus g = 2,
the dimension of the space of hyperbolic metrics, up to isometry, is 6g — 6. In dimension 3,
the same flexibility is true for some geometries like E3 but in the generic case of H® we have:

Mostow Rigidity: Let M, N be compact hyperbolic n-manifolds with n = 3. Then if 7, (M) is
isomorphic to 71 (V) then M and N are isometric.

So for a hyperbolic 3-manifold, geometric invariants such as volume, length of shortest
geodesic, or eigenvalues of the Lapacian are actually topological invariants. Dimension 3
is the unique dimension where topology and geometry more or less coincide. Understand-
ing the detailed connections between topology and geometry can be subtle, though, and is
one of important areas in the field. Also, there seem to be certain questions which are purely
topological that the geometric point of view does not offer much insight. Fortunately, in
some of these cases, gauge-theory invariants (especially Floer homology in its many flavors)
are powerful tools.
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* Topological Foundations: Weeks 1-4. Follows Hatcher and Thurston.

Fundamental Goal: Classify compact 3-manifolds.

Examples: Triangulations, Heegaard splittings, and Dehn surgery.

Categories: Smooth, PL, and Top.

Connected sum decomposition.

* Definitions and examples. Statement of decomposition theorem.

+ Every smooth S? in R® bounds a ball.

+ Combinatorial minimal surfaces (aka normal surfaces).

« Proof of theorem.

+ How this allows us to avoid the Poincaré conjecture, much of the time.

Homotopy to geometry (more normal surfaces)

+ Loop Theorem.
- Incompressible surfaces.

+ Sphere Theorem: If M is a 3-manifold and 7, (M) # 0 then there is an embedded
2-sphere which is non-trivial in 7, (M).

+ Consequences: Many 3-manifolds are K(r,1)’s.

Normal surfaces and Algorithms for 3-manifolds.



* The Geometry of 3-manifolds: Weeks 4-6. Follows Thurston, Bonahon, Scott.

Overview, dimension 2, dimensions > 3. Why dimension 3 is so special.

The eight 3-dimensional geometries.

Seifert fibered spaces.

Hyperbolic 3-manifolds.

JSJ decomposition theorem (decomposition along tori).

+ Special case of knot complements in S3.

Thurston’s Geometrization Conjecture.

Consequences of having a geometric structure: properties of the fundamental group.

* A more recent developement: Weeks 6-9.



