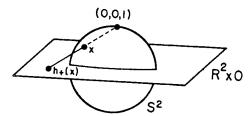
Ma 109b, HW 3. Due Wednesday, January 25

1. Let $S^2 = \{x \in \mathbb{R}^3 : |x| = 1\}$ be the round unit sphere. Identify \mathbb{R}^2 with the (x, y)-plane $\mathbb{R}^2 \times \{0\}$ in \mathbb{R}^3 . Consider the stereographic projection from the north pole n = (0, 0, 1),

$$h_+: S^2 \setminus \{n\} \to \mathbb{R}^2$$
,

as described in the figure below:



Symmetrically, let h_{-} be the stereographic projection from the south pole s = (0, 0, -1).

- (a) Show that h_{+}^{-1} and h_{-}^{-1} are coordinate patches for S^{2} . (As with last week, use my definition of coordinate patch, not the one in the text.)
- (b) Compute the change of coordinate map $h_+ \circ h_-^{-1}$, noting the domain and range.
- (c) Let $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_1z + a_0$ be a polynomial with complex coefficients. We will regard p as a smooth function from \mathbb{R}^2 to itself by identifying \mathbb{R}^2 with \mathbb{C} . Define a function $P: S^2 \to S^2$ by $P = h_+^{-1} \circ p \circ h_+$ on $S^2 \setminus n$, and P(n) = n. Prove that P is smooth.

Note: You should think of n as corresponding to ∞ in some reasonable way. The reason for this subproblem will become clear in Problem 5.

- 2. Two regular surfaces S_1 and S_2 are *transverse* if for each point p in $S_1 \cap S_2$ we have $T_pS_1 \neq T_pS_2$. Prove that if S_1 and S_2 are transverse, then $S_1 \cap S_2$ is a regular curve.
- 3. Suppose $\phi: S_1 \to S_2$ is a smooth map of smooth surfaces in \mathbb{R}^3 . For a point $p \in S_1$, we will define the derivative

$$D_p\phi\colon\thinspace T_pS_1\to T_{f(p)}S_2$$

of ϕ at p as follows. Given a smooth curve $\alpha: (-\epsilon, \epsilon) \to S_1$ with $\alpha(0) = p$, set

$$D_p\phi(\alpha'(0))=(\phi\circ\alpha)'(0)$$

- (a) Prove that $D_p\phi$ is well-defined and is a linear map.
- (b) If ϕ is a diffeomorphism, prove that $D_p\phi$ is an isomorphism for all p.
- 4. Suppose that $\phi: S_1 \to S_2$ is a smooth map of surfaces. A point $p \in S_1$ is a *critical point* if $D_p \phi$ is non-invertible. A point $q \in S_2$ is a *critical value* if some point in $f^{-1}(q)$ is a critical point. The complement of the critical values in S_2 are called *regular values*.
 - (a) Suppose S_1 is compact. Prove that if $q \in S_2$ is a regular value, then $f^{-1}(q)$ is finite.

1

- (b) Again suppose S_1 is compact. Suppose $U \subset S_2$ is a connected set of regular values. Show that $\#f^{-1}(q)$ is constant on U.
- (c) Sketch an example to show that (b) fails if U is not connected.
- 5. Use Problems 1(c) and 4 to prove

The Fundamental Theorem of Algebra *Let* P *be a non-constant polynomial with coefficients in* \mathbb{C} . *Then* P *has a root in* \mathbb{C} .

6. Book problem 4.5.1. Do any 2 of the 4 parts.