Ma 109b, HW \#5. Due Wednesday, February 15.

1. Prove Lemma 5.6 .8 in the text.
2. Let $S \subset \mathbb{R}^{3}$ be a smooth surface. A symmetry of S is an isometry $\phi: S \rightarrow S$.
(a) Suppose ϕ is a symmetry of S which fixes a point p in S as well as a tangent vector $v \in T_{p} S$. Prove the geodesic through p with tangent vector v is pointwise fixed by ϕ.
(b) Use part (a) to show that the geodesics on the round sphere S^{2} are exactly the great circles (i.e. the intersections of S^{2} with planes through the origin). Also, use it to find some geodesics on a interesting surface of your choice.
3. Let $S \subset \mathbb{R}^{3}$ be a smooth surface. Recall that the intrinsic metric on S is given by

$$
d(p, q)=\inf \{\text { Length }(c) \mid c \text { as smooth curve joining } p \text { to } q\}
$$

(a) Prove that d is really a metric, that is, check the axioms for a metric given in, for instance, Armstrong §2.4.
(b) Prove that the topology induced by d is the same as the one S inherits as a subspace of \mathbb{R}^{3}.
(c) Suppose further that S is closed in \mathbb{R}^{3}. If A is a closed subset of S which is bounded with respect to d, prove that A is compact.
4. Let $S \subset \mathbb{R}^{3}$ be a closed subset which is a smooth surface. The goal of this problem will be to show that for all $p, q \in S$, there exists a geodesic c joining p to q with Length $(c)=d(p, q)$.
The key tool is the follow concept. A broken geodesic in S is a piecewise smooth curve c consisting of a finite number of geodesic segments glued end to end. Despite the name, a geodesic is an example of a broken geodesic.
(a) If c is a smooth curve joining p to q, prove there is a broken geodesic \tilde{c} joining p to q with Length $(\tilde{c}) \leq$ Length (c).
(b) Suppose that c is a broken geodesic joining p to q. Prove that if c is not a geodesic, then there exists a smooth curve \tilde{c} joining p to q such that Length $(\tilde{c})<\operatorname{Length}(c)$.
(c) Prove there exists a broken geodesic joining p to q whose length is equal to $d(p, q)$.
(d) Show that there exists a geodesic c joining p to q with Length $(c)=d(p, q)$.

