Ma 109b, HW #7. Due Wednesday, February 22.

1. Let p be a point in a smooth surface S. Let e_1, e_2 be an orthonormal basis for T_pS and consider the geodesic polar coordinates

$$f: (0, R_0) \times (0, 2\pi) \to S$$
 given by $f(r, \theta) = \exp_p(r \cos \theta e_1 + r \sin \theta e_2)$

Prove the following identities which were used in class

$$f_{rr} = -L_{11}n$$

$$f_{\theta r} = \frac{G_r}{2G}f_{\theta} -L_{21}n$$

where *G* is the metric coefficient g_{22} , *n* is the *unit* normal vector in direction $f_r \times f_\theta$, and (L_{ij}) is matrix of the Weingarten map $L = D\hat{n}$ w.r.t. f_r , f_θ .

Also, derive the corresponding formula for $f_{\theta\theta}$.

- 2. Let *S* be a smooth surface in \mathbb{R}^3 . Supposing that *S* is compact, prove that there is a point *p* in *S* where K(p) > 0.
- 3. Let *S* be a smooth surface in \mathbb{R}^3 . Let *R* be a compact region of *S* bounded by a family of broken geodesics. Here is an example:

Derive a version of Gauss-Bonnet for this setting, i.e. express $\int_R K dA$ in terms of $\chi(R)$ and the angles between segments of the broken geodesics. You may assume anything that seems reasonable about the existence geodesic triangulations.

- 4. Let *S* be a smooth 2-sphere in \mathbb{R}^3 where K > 0 everywhere. A *closed geodesic* is a geodesic which is an embedded circle. Prove that any two closed geodesics in *S* must intersect. Is this still true if we drop the requirement on K?
- 5. The unit sphere has constant curvature K = 1, the plane constant curvature K = 0. Find a surface in \mathbb{R}^3 with constant curvature K = -1. Hint: Surfaces of revolution should be your friends, and note that (2) above means that your surface can't be compact.