Math 157a Homework #5; Due Friday, February 16

1. Let (M, g) be a Riemannian manifold and p a point in M. Let O be the orthogonal group of $T_p(M)$ (that is, linear automorphisms of $T_p(M)$ which preserve g_p). Give O a biinvariant Riemannian metric so that the associated volume form dV has mass 1, that is $\int_O 1 dV = 1$; as mentioned in class dV is independent of choice of metric. Give $G = G^2 T_p M$ the measure dm which is the push forward of dV under the quotient map $O \rightarrow G$. Show that

$$\int_G K(P)dm(P) = \frac{1}{n(n-1)}Scal_p$$

where this integral represents the average sectional curvature at p, and $Scal_p$ is the scalar curvature.

- 2. Let *M* be an odd dimensional compact Riemannian manifold. Show that if all sectional curvatures are positive, then *M* is orientable.
- 3. Let *g* be a complete Riemannian metric on \mathbb{R}^2 . For $(x, y) \in \mathbb{R}^2$ let K(x, y) be the sectional curvature at (x, y). Prove that

$$\lim_{r\to\infty} \left(\inf\left\{ K(x,y) \mid x^2 + y^2 \ge r^2 \right\} \right) \le 0.$$

- 4. Let (M, g) be a Riemannian manifold which is algebraically locally symmetric (recall from the last HW this means DR = 0 everywhere). Let $c: [0, \infty) \to M$ be a geodesic, and set p = c(0) and v = c'(0). Define a linear transformation $K_v: T_pM \to T_pM$ by $K_v(x) = R(v, x)v$.
 - (a) Show that there exists an orthonormal basis e_i of $T_p M$ and $\lambda_i \in \mathbb{R}$ so that $K_v(e_i) = \lambda_i e_i$ for all *i*.
 - (b) Extend the basis e_i of part (a) to parallel vector fields X_i along c. Show that for each t:

$$K_{c'(t)}(X_i(t)) = \lambda_i X_i(t),$$

where $K_{c'(t)}$ is defined analogously to K_{ν} and the λ_i are the (fixed) eigenvalues of the original K_{ν} .

(c) Show that the conjugate points of *p* along *c* are given by $c(\pi k \lambda_i^{-1/2})$ where *k* is a positive integer and λ_i is a positive eigenvalue of K_v . (Hint: use (b) to concisely express the Jacobi equation.)