Math 157a Homework \#5; Due Friday, February 16

1. Let (M, g) be a Riemannian manifold and p a point in M. Let O be the orthogonal group of $T_{p}(M)$ (that is, linear automorphisms of $T_{p}(M)$ which preserve g_{p}). Give O a biinvariant Riemannian metric so that the associated volume form $d V$ has mass 1 , that is $\int_{O} 1 d V=1$; as mentioned in class $d V$ is independent of choice of metric. Give $G=G^{2} T_{p} M$ the measure $d m$ which is the push forward of $d V$ under the quotient map $O \rightarrow G$. Show that

$$
\int_{G} K(P) d m(P)=\frac{1}{n(n-1)} \text { Scal }_{p}
$$

where this integral represents the average sectional curvature at p, and Scal_{p} is the scalar curvature.
2. Let M be an odd dimensional compact Riemannian manifold. Show that if all sectional curvatures are positive, then M is orientable.
3. Let g be a complete Riemannian metric on \mathbb{R}^{2}. For $(x, y) \in \mathbb{R}^{2}$ let $K(x, y)$ be the sectional curvature at (x, y). Prove that

$$
\lim _{r \rightarrow \infty}\left(\inf \left\{K(x, y) \mid x^{2}+y^{2} \geq r^{2}\right\}\right) \leq 0
$$

4. Let (M, g) be a Riemannian manifold which is algebraically locally symmetric (recall from the last HW this means $D R=0$ everywhere). Let $c:[0, \infty) \rightarrow M$ be a geodesic, and set $p=c(0)$ and $v=c^{\prime}(0)$. Define a linear transformation $K_{v}: T_{p} M \rightarrow T_{p} M$ by $K_{\nu}(x)=R(v, x) v$.
(a) Show that there exists an orthonormal basis e_{i} of $T_{p} M$ and $\lambda_{i} \in \mathbb{R}$ so that $K_{\nu}\left(e_{i}\right)=\lambda_{i} e_{i}$ for all i.
(b) Extend the basis e_{i} of part (a) to parallel vector fields X_{i} along c. Show that for each t :

$$
K_{c^{\prime}(t)}\left(X_{i}(t)\right)=\lambda_{i} X_{i}(t),
$$

where $K_{c^{\prime}(t)}$ is defined analogously to K_{ν} and the λ_{i} are the (fixed) eigenvalues of the original K_{ν}.
(c) Show that the conjugate points of p along c are given by $c\left(\pi k \lambda_{i}^{-1 / 2}\right)$ where k is a positive integer and λ_{i} is a positive eigenvalue of K_{v}. (Hint: use (b) to concisely express the Jacobi equation.)

