Math 157a Homework \#6; Due Friday, March 2

1. Prove Scholium 3.78 from GHL:

Let M be a complete Riemannian manifold, and p a point in M. Show that $q \in M$ is in the cut-locus of p if and only if at least one of the following holds:
(a) There exist distinct minimal geodesics joining p to q.
(b) There is a minimal geodesic joining p to q along which p and q are conjugate.
2. Let M be a complete Riemannian manifold with non-positive sectional curvature. Consider points p and q in M. Prove that there is a unique geodesic in each homotopy class of paths joining p to q.
3. Let M be a complete Riemannian manifold with non-positive sectional curvature. Show that a non-trivial element of $\pi_{1}(M)$ has infinite order.
4. As in past HWs, say that a Riemannian manifold (M, g) is algebraically locally symmetric if $D R=0$ everywhere. A Riemannian manifold (M, g) is geometrically locally symmetric if for each p in M there is a small embedded ball $B_{p}(\epsilon)$ so that map $\exp (\nu) \mapsto \exp (-\nu)$ is an isometry on $B_{p}(\epsilon)$.
Prove that these two conditions are equivalent.

