Math 231 E1H: HW \#12

Due date: In class on Wednesday, December 10.

Smith and Minton, Section 9.6: \#13, 15, 17.
Hubbard and Hubbard (attached) Section 0.7: \#2, 3, 6, 8, 11(a), 13.

Math 231 E1H: Honors Problem Set \#4 (Corrected)

Due date: In class on Wednesday, December 10, on separate sheets from HW \#12.

1. Recall that a function is odd if $f(-x)=-f(x)$ for all x, and even if $f(-x)=f(x)$ for all x. Suppose f and g are two functions and set $h(x)=f(x) g(x)$.
(a) Suppose f is odd and g is even. What can you say about h ?
(b) Suppose f and g are both odd. What can you say about h ?
(c) Suppose f and g are both even. What can you say about h ?
2. Suppose f is an odd function. Show that for each $L>0$ one has

$$
\int_{-L}^{L} f(x) d x=0
$$

Hint: break the integral into two pieces by splitting the interval $[-L, L]$ at 0 . Then do a change of variables (u-substitution) to one of the new integrals to make it look more like the other one.
3. Suppose f is an even function. Find a relationship between

$$
\int_{-L}^{L} f(x) d x \text { and } \int_{0}^{L} f(x) d x
$$

Justify your answer carefully.
4. Use questions 1 and 2 to prove that if f is an odd function then its Fourier expansion has no cosine terms (i.e. $a_{k}=0$ for $k>1$). What, if anything, can you say about a_{0} ?
5. Use the properties that $e^{a+b}=e^{a} e^{b}$ and $e^{i \theta}=\cos \theta+i \sin \theta$ for a real number θ to derive the sum formulas for sine and cosine.

