Math 231 E1H: Honors Problem Set 1

Due date: In class on Wednesday, September 24.

For each n, consider the quantity:

$$
A_{n}=2 \cdot \frac{2^{2} \cdot 4^{2} \cdot 6^{2} \cdots(2 n-2)^{2}(2 n)^{2}}{3^{2} \cdot 5^{2} \cdot 7^{2} \cdots(2 n-1)^{2}(2 n+1)}
$$

or equivalently

$$
A_{n}=2 \cdot \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots \frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1}
$$

For instance, $A_{1}=8 / 3$ and $A_{2}=128 / 45$. In this honors set, you will show that $\lim _{n \rightarrow \infty} A_{n}=\pi$; this can be interpreted as saying that π is an infinite product

$$
\pi=2 \cdot \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots \frac{2 n}{2 n-1} \cdot \frac{2 n}{2 n+1} \cdots
$$

1. Compute a decimal expression for A_{1}, A_{2}, A_{3}, and A_{4}. Do the numbers you get seem to be approach π ? If you want, use a computer to find n where A_{n} agrees with π to several decimal places.
2. Consider the quantity $I_{n}=\int_{0}^{\pi / 2} \sin ^{n}(x) d x$. Compute I_{0}, I_{1}, and I_{2}.
3. Show that the relation $I_{n}=\frac{n-1}{n} I_{n-2}$ holds for $n \geq 2$. Hint: Use a problem from HW \#2.
4. Show that $I_{2 n+1} / I_{2 n}=A_{n} / \pi$ for each $n \geq 1$.
5. Show that $\lim _{n \rightarrow \infty} I_{2 n+1} / I_{2 n}=1$. Hint: First show that $I_{2 n+2} \leq I_{2 n+1} \leq I_{2 n}$ by comparing the integrands. Then use the Squeeze Theorem on page 84.
6. Conclude that $\lim _{n \rightarrow \infty} A_{n}=\pi$.

Note: I'm certainly not asking for formal proofs but you should both show your work and explain your answer. Use of words is required, and complete sentences are encouraged.

