Math 231 E1H: Honors Problem Set 2

Due date: In class on Wednesday, October 22.

- 1. Consider the sequence $a_n = \frac{2n-1}{n}$ for $n \ge 1$.
 - (a) Determine $\lim_{n\to\infty} a_n = L$.
 - (b) Find an N so that

$$|a_n - L| < 0.04$$
 for all $n \ge N$.

Explain carefully why your choice of N works.

(c) Find an *N* so that that

$$|a_n - L| < 0.001$$
 for all $n \ge N$.

Again, explain carefully why your choice of N works.

(d) Directly from the definition on page 612, *prove* that lim_{n→∞} a_n = L.
Your answer should follow the template: "Let *ε* > 0 be given. Choose *N* to be (something depending on *ε*). Then when n ≥ N, we have

 $|a_n - L| \le ($ manipulations with all steps explained $) < \epsilon$.

Thus $\lim_{n\to\infty} a_n = L$."

2. Explain why

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e$$

Hint: Take natural logs of both sides and convert into something where you can apply L'Hopital's rule.

- 3. Given an example where $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$ both diverge, but $\sum_{k=1}^{\infty} (a_k + b_k)$ converges.
- 4. Section 8.2: #44.
- 5. Section 8.3: #67 and #68.