Math 231 E1H: Honors Problem Set 2

Due date: In class on Wednesday, October 22.

1. Consider the sequence $a_{n}=\frac{2 n-1}{n}$ for $n \geq 1$.
(a) Determine $\lim _{n \rightarrow \infty} a_{n}=L$.
(b) Find an N so that

$$
\left|a_{n}-L\right|<0.04 \quad \text { for all } n \geq N .
$$

Explain carefully why your choice of N works.
(c) Find an N so that that

$$
\left|a_{n}-L\right|<0.001 \text { for all } n \geq N \text {. }
$$

Again, explain carefully why your choice of N works.
(d) Directly from the definition on page 612, prove that $\lim _{n \rightarrow \infty} a_{n}=L$.

Your answer should follow the template: "Let $\epsilon>0$ be given. Choose N to be (something depending on ϵ). Then when $n \geq N$, we have

$$
\left|a_{n}-L\right| \leq(\text { manipulations with all steps explained })<\epsilon .
$$

Thus $\lim _{n \rightarrow \infty} a_{n}=L . "$
2. Explain why

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=e
$$

Hint: Take natural logs of both sides and convert into something where you can apply L'Hopital's rule.
3. Given an example where $\sum_{k=1}^{\infty} a_{k}$ and $\sum_{k=1}^{\infty} b_{k}$ both diverge, but $\sum_{k=1}^{\infty}\left(a_{k}+b_{k}\right)$ converges.
4. Section 8.2: \#44.
5. Section 8.3: \#67 and \#68.

