Math 241 F1H: Problem Set 6

Due date: In class on Tuesday, March 4.

1. A small company produces two products: widgets and spatulas. Each product requires the use of three machines, a grinder, a crusher, and an oven. Below is the length of time, in hours, that it takes to make a single product:

	grinder	crusher	oven	total
widgets	0.5	0.4	0.2	1.1
spatulas	0.25	0.3	0.4	0.95

The grinder is available for use 40 hours a week, but the other two machines are only available 36 hours a week due to warmup time. Suppose that the profit from making a widget is $\$ 5$ and a spatula $\$ 3$. How many widgets and spatulas should be produced each week to maximize profit?
2. Consider the constraints:

$$
3 x+2 y+3 z \leq 3, \quad x+2 y \leq 2, \quad \text { and } \quad x, y, z \geq 0
$$

(a) Maximize $f(x, y, z)=x+2 y+z$ subject to the above constraints.
(b) Maximize $f(x, y, z)=2 x+2 y-z$ subject to the above constraints.
3. Section $3.1 \# 3$.
4. Section 3.1 \#15.
5. Section 3.1 \#29.
6. Section 3.3 \#15.
7. Section 5.1 \#20.
8. Section 5.1 \#22.
9. Section 5.2 \#1 and \#2.
10. Section 5.2 \#9.
11. Section 5.2 \#17.
12. Section 5.2 \#26.
13. Section 5.3 \#1 and \#2.
14. Section 5.3 \#15.

Note: This assignment is complete.

