Math 241 F1H: Problem Set 9

Due date: Tuesday, April 8.
Midterm: The third midterm exam will be held in class on Thursday, April 10.
Office Hours: My office hours next week will be

- Monday: 3-5.
- Tuesday: 9-10:30 and 4:00-5:30.
- Wednesday: 9-10:30 and 3:00-5:00.

Review: Wednesday's lecture will be a review session. As always, please send me suggestions for topics.

1. Section 7.3: \#16.
2. Section 7.3: \#17.
3. Section 7.4: \#3, 5, 6.
4. Section 7.4: \#15. (See Example 2.90 on page 146 for the setup on heat flow. In this problem, the conductivity is to be taken to be 1.)
5. Section 7.4: \#21.
6. Section 7.4: \#23.
7. Verify Green's Theorem for the region and vector field given in $\S 8.1$ \#12, that is, compute the line integral $\int_{C} \mathbf{F} \cdot d s$ directly and compare the result to $\iint_{D}\left(\frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) d A$.
8. Let D be a region in \mathbb{R}^{2} which is star-shaped about $\mathbf{0}$. That is, the boundary of D can be parameterized by

$$
c(t)=(f(t) \cos t, f(t) \sin t) \quad \text { for } 0 \leq t \leq 2 \pi,
$$

where $f:[0,2 \pi] \rightarrow[0, \infty)$ satisfies $f(0)=f(2 \pi)$ so that this gives us a closed curve.
Without using Green's Theorem, show that for the vector field $\mathbf{F}=\frac{1}{2}(-y, x)$ one has

$$
\int_{\partial D} \mathbf{F} \cdot d s=\operatorname{Area}(\mathrm{D})
$$

by using the parameterization above.
9. Section 8.2: \#2.
10. Section 8.2: \#7.
11. Section 8.2: \#13.
12. Consider a region D in \mathbb{R}^{2} with a single boundary component C, and let \mathbf{n} be the outwardpointing unit vector field.
Given a vector field $\mathbf{F}=\left(F_{1}, F_{2}\right)$ on D, define a new vector field by $\mathbf{G}=\left(-F_{2}, F_{1}\right)$. Show that
(a) $\int_{C} \mathbf{F} \cdot \mathbf{n} d s=\int_{C} \mathbf{G} \cdot d s$
(b) $\iint_{D} d i v \mathbf{F} d A=\iint_{D}\left(\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}\right) d A$.

Explain why this means that Green's Theorem and the Divergence Theorem in \mathbb{R}^{2} are equivalent.

Note: This assignment is complete.

