Math 525: Takehome Midterm 2 Solutions

Here is a detailed solutions for the problem that caused people the most difficulty.

Problem 3: Hatcher §2.1 \#22

Let X be a finite-dimensional CW-complex. Throughout, I freely us that excision gives

$$
H_{n}\left(X^{k}, X^{k-1}\right) \cong \tilde{H}_{n}\left(X^{k} / X^{k-1} \cong \bigvee_{\alpha} S^{k}\right) \cong \bigoplus_{\alpha} \tilde{H}_{n}\left(S^{k}\right)= \begin{cases}\bigoplus_{\alpha} \mathbb{Z} & \text { if } n=k \\ 0 & \text { otherwise }\end{cases}
$$

where α indexes the k-cells.
(a) The homology group $H_{i}(X)=0$ for $i>d=\operatorname{dim} X$, and $H_{d}(X)$ is free of rank at most the number of d-cells.

Proof. If $d=0$, then $X=X^{0}$ is a discrete set of points, from which (a) follows as we know $H_{*}(X)$ completely. Inductively, suppose (a) holds for all CW-complexes of dim $<d$. Then if X has dimension d and $i>d$, by induction the exact sequence

$$
0 \cong H_{i}\left(X^{d-1}\right) \longrightarrow H_{i}\left(X \cong X^{d}\right) \longrightarrow H_{i}\left(X, X^{d-1}\right) \cong 0
$$

forces $H_{i}(X)=0$, as desired. For $i=d$, the exact sequence

$$
0 \cong H_{d}\left(X^{d-1}\right) \longrightarrow H_{d}(X) \xrightarrow{j_{*}} H_{i}\left(X, X^{d-1}\right) \cong \bigoplus_{d \text {-cells }} \mathbb{Z}
$$

implies that j_{*} is injective. Thus $H_{d}(X)$ can be regarded as a subgroup of the free abelian group $\oplus_{d \text {-cells }} \mathbb{Z}$, and hence is free of rank at most the number of d-cells.

The following lemma makes (b) and (c) easier:
Lemma. If $k>n$, then $H_{n}(X) \cong H_{n}\left(X^{k}\right)$.
Proof. Since X is finite dimensional, it suffices to show $H_{n}\left(X^{k}\right) \cong H_{n}\left(X^{n+1}\right)$ for all $k>n$. We induct on k; the base case $k=n+1$ is trivial. Assuming it holds for some $k>n$, we have

$$
0 \cong H_{n+1}\left(X^{k+1}, X^{k}\right) \rightarrow H_{n}\left(X^{k}\right) \rightarrow H_{n}\left(X^{k+1}\right) \rightarrow H_{n}\left(X^{k+1}, X^{k}\right) \cong 0
$$

which forces the middle map to be an isomorphism, as desired.
(b) If X has no $n+1$ or $n-1$ cells, then $H_{n}(X)$ is free on the n-cells.

Proof. If $n=0$, each path component of X contains exactly one 0 -cell since there are no 1 -cells and ∂D^{n} is path connected for $n>1$. If $n=1$, then $X=\emptyset$ as there are no 0 -cells. So assume that $n>1$. By the lemma, $H_{n}(X) \cong H_{n}\left(X^{n+1}=X^{n}\right)$ as there are no $n+1$ cells. Moreover, part (a) gives us

$$
0 \cong H_{n}\left(X^{n-2}\right) \rightarrow H_{n}\left(X^{n}\right) \rightarrow H_{n}\left(X^{n}, X^{n-2}\right) \rightarrow H_{n-1}\left(X^{n-2}\right) \cong 0
$$

and as there are no $n-1$-cells, we have

$$
H_{n}\left(X^{n}\right) \cong H_{n}\left(X^{n}, X^{n-2}\right)=H_{n}\left(X^{n}, X^{n-1}\right) \cong \bigoplus_{n \text {-cells }} \mathbb{Z}
$$

as desired.
(c) If X has $k n$-cells then $H_{n}(X)$ is generated by k elements.

Proof. By the lemma, we have $H_{n}(X) \cong H_{n}\left(X^{n+1}\right)$. Moreover, exactness of

$$
H_{n}\left(X^{n}\right) \xrightarrow{j_{*}} H_{n}\left(X^{n+1}\right) \rightarrow H_{n}\left(X^{n+1}, X^{n}\right) \cong 0 .
$$

means j_{*} is onto. By (a), $H_{n}\left(X^{n}\right)$ is generated by at most k elements, and hence so is the quotient group $H_{n}(X)$.

