HW 1 SOLUTIONS, MA525

1. Problem 1

Let C be a closed subset of Y. Then $f^{-1}(C)=f_{A}^{-1}(C) \cup f_{B}^{-1}(C)$. Since f_{A} and f_{B} are continuous, the sets $f_{A}^{-1}(C)$ and $f_{B}^{-1}(C)$ are closed in A and B respectively, and hence in X. This implies $f^{-1}(C)$ is closed in X, and hence f is continuous.

2. Problem 4

$(a) \Rightarrow(b)$. Let $f: S^{1} \rightarrow X$ be a map and suppose f is homotopic to the constant map $c_{0}: S^{1} \rightarrow x_{0}$. This means that there is a map $F: S_{1} \times[0,1] \rightarrow X$ such that $F(a, 0)=f(a)$ and $F(a, 1)=x_{0}$. Consider the quotient map $q: S^{1} \times[0,1] \rightarrow \mathbb{D}^{2}$ given by identifying all points $(a, 1)$ to a single point. Because $F(a, 1)=x_{0}$, the map descends to a map $\bar{F}: \mathbb{D}^{2} \rightarrow X$ such that $F=\bar{F} \circ q$. The map \bar{F} restricted to $S^{1}=q\left(S^{1} \times\{0\}\right)$ is f.
$(b) \Rightarrow(c)$. Embed $S^{1} \in \mathbb{C}$ in the standard way. Think of a loop based at x_{0} as a map $f: S^{1} \rightarrow X$ that sends $1 \in S^{1}$ to x_{0}. Extend it to a map $F: \mathbb{D}^{2} \rightarrow X$. Consider the map $G: S^{1} \times[0,1] \rightarrow X$ defined by $G=F \circ q$. The map G defines a homotopy to the constant map $F(0)$. Since any two constant maps are homotopic and homotopy is a transitive relation, $\pi_{1}\left(X, x_{0}\right)=0$.
$(c) \Rightarrow(a)$. Directly from definitions.
When X is simply connected, every map f from S^{1} into X thought of as a loop in X based at $x_{0}=f(1)$ is homotopic to the constant map to x_{0}. Similarly, g from S^{1} into X is homotopic to the constant map to $g(1)$. Any two constant maps are homotopic. Since homotopy is a transitive relation, this implies f and g are homotopic. The converse is just the definition.

