HW 10 SOLUTIONS, MA525

Hatcher 2.2 Problem 29
The Mayer-Vietoris sequence gives

$$
\cdots \rightarrow H_{n}\left(M_{g}\right) \rightarrow H_{n}(R) \oplus H_{n}(R) \rightarrow H_{n}(X) \rightarrow H_{n-1}\left(M_{g}\right) \rightarrow \cdots
$$

The compact space R deformation retracts on a wedge of g circles. So $H_{0}(R)=\mathbb{Z}, H_{1}(R)=$ $\oplus_{i=1}^{g} \mathbb{Z}, H_{n}(R)=0$ for $n>1$. Also we know $H_{0}\left(M_{g}\right)=\mathbb{Z}, H_{1}\left(M_{g}\right)=\oplus_{i=1}^{2 g} \mathbb{Z}, H_{2}\left(M_{g}\right)=$ $\mathbb{Z}, H_{n}(R)=0$ for $n>1$. Call the 1-cycles on M_{g} that give the generators of $H_{1}(R)$ as the a-cycles. Then, there are the 1 -cycles on M_{g} that bound disks in R, which we shall call the b-cycles. The a

Figure 1. M_{g}
and b-cycles together generate $H_{1}\left(M_{g}\right)$ and the induced maps $H_{1}\left(M_{g}\right) \rightarrow H_{1}(R)$ send the a-cycles to the generators of $H_{1}(R)$ for both the handle-bodies and send the b-cycles to zero. By computing the various maps in the Mayer-Vietoris sequence, in particular, the map $H_{1}\left(M_{g}\right) \rightarrow H_{1}(R) \oplus H_{1}(R)$ has the diagonal as the image, with kernel $\oplus_{i=1}^{g} \mathbb{Z}$ generated by the b-cycles, we get
(1) Since $H_{n}(R)=H_{n}\left(M_{g}\right)=0$ for all $n \geq 3$, we get $H_{n}(X)=0$ for all $n>3$.
(2) Because $H_{3}(R)=H_{2}(R)=0$, we get $H_{3}(X)=H_{2}\left(M_{g}\right)=\mathbb{Z}$.
(3) Because $H_{2}(R)=0$, we have the exact sequence

$$
0 \rightarrow H_{2}(X) \rightarrow H_{1}\left(M_{g}\right) \rightarrow H_{1}(R) \oplus H_{1}(R) \rightarrow \cdots
$$

which implies $H_{2}(X)=\operatorname{Ker}\left(H_{1}\left(M_{g}\right) \rightarrow H_{1}(R) \oplus H_{1}(R)\right)=\oplus_{i=1}^{g} \mathbb{Z}$ generated by the b cycles.
(4) The Mayer-Vietoris sequence terminates in

$$
\cdots \rightarrow H_{1}(X) \rightarrow H_{0}\left(M_{g}\right) \rightarrow H_{0}(R) \oplus H_{0}(R) \rightarrow H_{0}(X) \rightarrow 0
$$

This implies the map $H_{0}(R) \oplus H_{0}(R) \rightarrow H_{0}(X)$ is surjective, and as before the map $H_{0}\left(M_{g}\right) \rightarrow H_{0}(R) \oplus H_{0}(R)$ has image the diagonal. Hence $H_{0}(X)=H_{0}(R) \oplus H_{0}(R) / \Delta=\mathbb{Z}$.
(5) The map $H_{0}\left(M_{g}\right) \rightarrow H_{0}(R) \oplus H_{0}(R)$ is also injective, so the image of $H_{1}(X) \rightarrow H_{0}\left(M_{g}\right)$ is just 0 . This gives us the exact sequence

$$
0 \rightarrow H_{2}(X) \rightarrow H_{1}\left(M_{g}\right) \rightarrow H_{1}(R) \oplus H_{1}(R) \rightarrow H_{1}(X) \rightarrow 0
$$

In the above sequence, the image of $H_{1}\left(M_{g}\right)$ is the diagonal. So $H_{1}(X)=H_{1}(R) \oplus$ $H_{1}(R) / \Delta=\oplus_{i=1}^{g} \mathbb{Z}$.

To find the relative homology groups $H_{n}\left(R, M_{g}\right)$, we use the long exact sequence in homology

$$
\cdots \rightarrow H_{n}\left(M_{g}\right) \rightarrow H_{n}(R) \rightarrow H_{n}\left(R, M_{g}\right) \rightarrow H_{n-1}\left(M_{g}\right) \rightarrow \cdots
$$

This gives
(1) $H_{n}\left(R, M_{g}\right)=0$ for $n>3$ because $H_{n}(R)=H_{n}\left(M_{g}\right)=0$ for $n \geq 3$.
(2) $H_{2}(R)=0$ implies $H_{3}\left(R, M_{g}\right)=H_{2}\left(M_{g}\right)=\mathbb{Z}$ and we get the exact sequence

$$
0 \rightarrow H_{2}\left(R, M_{g}\right) \rightarrow H_{1}\left(M_{g}\right) \rightarrow H_{1}(R) \rightarrow \cdots
$$

which means that $H_{2}\left(R, M_{g}\right) \rightarrow H_{1}\left(M_{g}\right)$ is injective.
(3) The long exact sequence terminates in

$$
\cdots \rightarrow H_{1}\left(R, M_{g}\right) \rightarrow H_{0}\left(M_{g}\right) \rightarrow H_{0}(R) \rightarrow H_{0}\left(R, M_{g}\right) \rightarrow 0
$$

The map $H_{0}\left(M_{g}\right) \rightarrow H_{0}(R)$ is an isomorphism, so $H_{0}\left(R, M_{g}\right)=0$. Also, the isomorphism gives the exact sequence

$$
0 \rightarrow H_{2}\left(R, M_{g}\right) \rightarrow H_{1}\left(M_{g}\right) \rightarrow H_{1}(R) \rightarrow H_{1}\left(R, M_{g}\right) \rightarrow 0
$$

The map $H_{1}\left(M_{g}\right) \rightarrow H_{1}(R)$ is onto, so $H_{1}\left(R, M_{g}\right)=0$. So $H_{2}\left(R, M_{g}\right)=\operatorname{Ker}\left(H_{1}\left(M_{g}\right) \rightarrow\right.$ $\left.H_{1}(R)\right)=\oplus_{i=1}^{g} \mathbb{Z}$.

Remark 0.1. Instead of gluing by the two handle-bodies by the identity map of the boundary surface, if we glue by a map of the surface that interchanges the a and b-cycles, we get S^{3} (embed the genus g handle-body in \mathbb{R}^{3} in the standard way; check that the complement of it in S^{3} is a genus g handle-body with the a and b-cycles switched). In fact, any closed 3 -manifold can be obtained by gluing two handle-bodies by a map of the boundary surface. This decomposition is called a Heegard decomposition of the 3-manifold.

Hatcher 2.2 Problem 35

Suppose there is a an embedding of X in \mathbb{R}^{3} with a neighborhood U, a mapping cylinder of a map $f: S \rightarrow X$, where S is a closed orientable surface. Let $V=S^{3} \backslash X$ and write $S^{3}=U \cup V$. By the Mayer-Vietoris sequence

$$
\cdots \rightarrow H_{2}\left(S^{3}\right) \rightarrow H_{1}(U \cap V) \rightarrow H_{1}(U) \oplus H_{1}(V) \rightarrow H_{1}\left(S^{3}\right) \rightarrow \cdots
$$

Since $H_{2}\left(S^{3}\right)=H_{1}\left(S^{3}\right)=1$, this says that there is an isomorphism $H_{1}(U \cap V)=H_{1}(U) \oplus H_{1}(V)$. Note that since U is the mapping cylinder of f, it deformation retracts to X. The set $U \cap V=$ $S \times[0,1)$ and so deformation retracts to S. So if $H_{1}(X)$ has torsion we get a contradiction.

Problem 4

(a): The set of 2-chains, $C_{2}(\Sigma)$ is generated by the triangles T_{i}, and the 1-chains, $C_{1}(\Sigma)$ by the edges e_{i}. Suppose a non-zero element $\sum a_{i} T_{i}$ is in the kernel of $\partial: C_{2}(\Sigma) \rightarrow C_{1}(\Sigma)$. Since each edge is shared by exactly two adjacent triangles, the coefficient a_{1} determines completely all other coefficients a_{i} (in fact, all other coefficients $a_{i}= \pm a_{1}$. So the kernel is generated by a single element. Since $C_{3}(\Sigma)=0$, the second homology $H_{2}(\Sigma)$ is isomorphic to the kernel in $C_{2}(\Sigma)$, so in this case it is \mathbb{Z}. The other possibility is that there is no non-zero element in the kernel, in which case $H_{2}(\Sigma)=0$.
(b): There is obviously a map of any degree from $T^{2} \rightarrow T^{2}$. So it is enough to show that there is a map of degree 1 from $T^{2} \rightarrow S^{2}$. The torus T^{2} is a square with opposite sides identified. Then, think of S^{2} as the square with the entire boundary identified to a single point. This gives the degree 1 map from $T^{2} \rightarrow S^{2}$.

On the other hand, let $f: S^{2} \rightarrow T^{2}$. Since S^{2} is simply connected, f lifts to the universal cover i.e. to a map $F: S^{2} \rightarrow \mathbb{R}^{2}$. Since \mathbb{R}^{2} is contractible, there is a homotopy of f to the constant map. This implies that the degree of f is zero.

