HW 3 SOLUTIONS, MA525

1. Problem 2

For $t \in[0,1]$, let $f_{t}: S^{1} \times I \rightarrow S_{1} \times I$ be defined by $f_{t}(\theta, s)=(\theta+2 \pi s t, s)$. Then $f_{0}=i d$ and $f_{1}=f$. Moreover, f_{t} restricted to $S^{1} \times\{0\}$ is the identity map.

Glue $S^{1} \times\{0\}$ to $S^{1} \times\{1\}$ by $(\theta, 0) \sim(\theta, 1)$ to get a torus T^{2}. Note that the map f descends down to a map F of the torus. If there is a homotopy f_{t} between f and $i d$ that is identity restricted to $S^{1} \times\{0\}$ and $S^{1} \times\{1\}$, then it descends down to a homotopy F_{t} of F to the identity map on the torus. This means that the map F_{*} induced on $\pi_{1}\left(T^{2}\right)$ has to be identity.

The path $\gamma_{0}: s \rightarrow\left(\theta_{0}, s\right)$ maps down to the longitude of the torus. The image $F_{*}\left(\gamma_{0}\right) \neq \gamma_{0}$ (in fact, it is the $(1,1)$ curve on the torus). Thus a homotopy as above cannot exist.

2. Problem 3

Let α be a loop based at x_{0} in X and let β be a loop based at y_{0} in Y. Let δ be the loop in $X \times Y$ given by the concatenation of the loops $\alpha \times\left\{y_{0}\right\}$ and $\left\{x_{0}\right\} \times \beta$ in that order i.e. first $\alpha \times\left\{y_{0}\right\}$ then $\left\{x_{0}\right\} \times \beta$. Let η be the loop in $X \times Y$ given by concatenating in the reverse order.

Consider the 1-parameter family of loops $\gamma_{t}:[-1,2] \rightarrow X \times Y$ given by

$$
\begin{aligned}
\gamma_{t}(s) & =\left(x_{0}, \beta(t(s+1))\right) & & s \in[-1,0] \\
& =(\alpha(s), \beta(t)) & & s \in[0,1] \\
& =\left(x_{0}, \beta((1-t)(s-2)+1)\right) & & s \in[1,2]
\end{aligned}
$$

In words, the loop γ_{t} follows β from $\left(x_{0}, y_{0}\right)$ to $\left(x_{0}, \beta(t)\right)$, then does the loop $(\alpha, \beta(t))$ in $X \times\{\beta(t)\}$ and then follows the rest of β from $\left(x_{0}, \beta(t)\right)$ back to $\left(x_{0}, y_{0}\right)$. It is easy to check that this gives a homotopy between δ and η i.e. $\gamma_{0}=\delta$ and $\gamma_{1}=\eta$.

3. Problem 5

Draw the torus as the square in \mathbb{R}^{2} with opposite sides identified and with vertices $(\pm 1, \pm 1)$. The union of the longitude and meridian circles of the torus can be taken to be the boundary of this square. Take the origin in \mathbb{R}^{2} to be the deleted point of the torus. Let $|(x, y)|=\max \{x, y\}$, and for $t \in[0,1]$ let $s=1-t(1-|(x, y)|)$. Consider the deformation retract

$$
F_{t}(x, y)=\frac{1}{s}(x, y)
$$

Check that F_{0} is the identity on the punctured torus and $F_{1}(x, y)$ belongs to the boundary of the square.

