HW 4 SOLUTIONS, MA525

Problem 5

Suppose X is a tree. Fixing some base-vertex x, for a positive integer k, call all vertices distance k from x as level k vertices. Because of the tree structure, all edges in the tree have endpoints in adjacent levels. We call all edges that have one endpoint in level $(k-1)$ and the other in level k as edges of level k. Again because of the tree structure, every vertex of level k, has exactly one edge of level k terminating on it. This implies that there is a bijection between the vertices of level k and the edges of level k. Taking union over all levels, this tells us that there is a bijection between the set of vertices excluding the base-point and the set of all edges in X. This implies $\chi(X)=1$.

For a general graph X pick a base vertex x, and let Y be a spanning tree in X from the base-vertex x. Let e be an edge in $X \backslash Y$ with endpoints x_{1} and x_{2}. There is a unique path $\left[x, x_{1}\right]$ in Y from x to x_{1} and a unique path $\left[x, x_{2}\right]$ in Y from x to x_{2}. Identify e with the loop $\gamma(e)=\left[x, x_{1}\right] * e *\left[x_{2}, x\right]$, where $*$ denotes concatenation of paths. Deformation retract the tree Y to the point x, to get a wedge of circles. Each γ_{e} retracts to a circle in the wedge, and if f is a different edge in $X \backslash Y$, then $\gamma(e)$ and $\gamma(f)$ are distinct circles in the wedge. Thus $\pi_{1}(X, x)$ is a free group with the basis γ_{e}. By counting, the number of basis elements is the same as the number of edges in $X \backslash Y$. From the definition of $\chi(X)$, this is the same as $1-\chi(X)$.

Problem 6

Think of F as $\pi_{1}(X, x)$ where X is the wedge of k circles at the base-point x, and where each generator a_{i} of F corresponds to the i-th copy of S^{1} in the wedge. We will use the correspondence of covering spaces of X and subgroups of $\pi_{1}(X, x)$. Let \widetilde{X} be the covering space associated to the subgroup H. Since $n=[F: H]$, the number of pre-images of x_{0} is n; denote these by y_{1}, \cdots, y_{n}.

Consider the lift $b_{i k}$ of the generator a_{i} starting from y_{k}. First, note that $b_{i k}$ is an edge from y_{k} to some y_{j} i.e. no interior point of $b_{i k}$ can be one of the pre-images. If for some k, the other endpoint of $b_{i k}$ is y_{k} i.e. the path $b_{i k}$ is a loop at y_{k}, then for all k, the paths $b_{i k}$ are loops at y_{k} (because the y_{k} evenly cover x). Similarly, if for some k, the path $b_{i k}$ is an edge between distinct vertices, then that is true for all k. In particular, a consequence of this is that the cover \widetilde{X} is a finite graph i.e. it has finitely many vertices n each with fixed degree $2 k$, where if there is a loop at the vertex it contributes 2 towards the degree.

A finite graph as above is homotopy equivalent to a wedge of circles. This proves that the subgroup H is free and of finite rank. Finally, by Problem 5 , the rank of H is $1-\chi(\widetilde{X})$. The number of vertices in \widetilde{X} is n, and the number of edges in \widetilde{X} is $k n$, since each vertex is of degree $2 k$. So the rank is $(k n-n+1)$.

