HW 7 SOLUTIONS, MA525

1. Hatcher 2.1, Problem 1

Cut along the edge marked with double arrows, and then flip vertically the triangle on the right, move it to the other side and glue. This shows it to be a mobius band.

2. Hatcher 2.1, Problem 12

Letting $F=0$ be the zero-homomorphisms, we see that $f_{\#}-f_{\#}=0=\partial 0+0 \partial=\partial F+F \partial$. Thus $f \sim f$. If $f \sim g$, then there exists F such that $f_{\#}-g_{\#}=\partial F+F \partial$ implying $g_{\#}-f_{\#}=$ $-\partial(F)+(-F) \partial=\partial(-F)+(-F) \partial$. Thus $-F$ shows that $g \sim f$. Finally, assume that $f \sim g$ and $g \sim h$. Then there exists homomorphisms F, G such that $f_{\#}-g_{\#}=\partial F+F \partial$ and $g_{\#}-h_{\#}=\partial G+G \partial$. If we add these equation we obtain $f_{\#}-h_{\#}=\partial F+F \partial+\partial G+G \partial$. Since ∂ is a homomorphism this equals $\partial(F+G)+F \partial+G \partial$, and by definition of $F+G$ this equals $\partial(F+G)+(F+G) \partial$. Hence $F+G$ shows that $f \sim h$. Thus we see \sim is reflexive, symmetric and transitive, and hence an equivalence relation.

3. Chapter 2.1, Problem 8

Refer to the picture of X in Hatcher, before the gluing of the lower face of T_{i} to the upper face of T_{i+1}. The terms upper and lower make sense in the picture and we shall use them with impunity. We shall call the central edge (the axis about which the whole picture can be rotated) as c and it's top vertex as 0 and bottom vertex as $n+1$. We shall index the vertices in the horizontal plane from 1 to n.

The gluing identifies 0 with $n+1$ to give a single vertex v. It also identifies vertex i to $i+1$ which means it identifies all vertices 1 to n to a single vertex w. Thus $C_{0}=\langle v, w\rangle \cong \mathbb{Z}^{2}$.

Moving onto the edges, there is the "central" vertical edge c. There are n edges $[i, 0]$ on top and n edges $[i, n+1]$ on bottom. The gluing process identifies the bottom edge $[i, n+1]$ with the top edge $[i+1,0]$. Each such pair gives an edge a_{i} in X. Finally, the horizontal edges running along the "rim" all get identified to a single edge b. Thus $C_{1}=\left\langle b, c, a_{i}, i=1, \ldots n\right\rangle \cong \mathbb{Z}^{n+2}$.

From the figure in Hatcher, the left face of each T_{i} is identified with the right face of T_{i+1} giving n vertical faces S_{i}, where $\partial\left(S_{i}\right)=a_{i}+c-a_{i+1}$. The bottom face of T_{i} is paired with the top face of T_{i+1} by the gluing process, thus giving n horizontal faces R_{i}, where $\partial\left(R_{i}\right)=a_{i}-a_{i+1}+b$. Hence $C_{2}=\left\langle S_{i}, R_{i}, i=1, \ldots n\right\rangle \cong \mathbb{Z}^{2 n}$.

As neither process identifies tetrahedra, there are still the $n 3$-simplices T_{i}, where $\partial\left(T_{i}\right)=$ $S_{i}-S_{i+1}-R_{i}+R_{i+1}$. Hence $C_{3}=\left\langle T_{i}, i=1, \ldots n\right\rangle$. There are no 4 -simplices, so $C_{4}=0$.
$H_{0}(X)=k e r \partial_{0} / i m \partial_{1}:$ First observe that $\partial_{1}(b)=v-v=0, \partial_{1}(c)=w-w=0$, and $\partial_{1}\left(a_{i}\right)=w-v$. Also, since $\partial_{0}=0$, it follows that $\operatorname{ker} \partial_{0}=C_{0}=\langle v, w\rangle$. Hence

$$
H_{0}(X)=\langle v, w \mid w-v=0\rangle=\langle w-v, w \mid w-v=0\rangle \cong \mathbb{Z}
$$

$H_{1}(X)=k e r \partial_{1} / i m \partial_{2}$: First note as seen above that $L_{1}=\left\{\left\{a_{i+1}-a_{i}\right\}_{i=1}^{n-1}, b, c\right\}$ are all in ker ∂_{1}. Since $\operatorname{rk}\left(i m \partial_{1}\right)=1$ (as seen above), and $r k\left(C_{1}\right)=n+2$, and C_{1} is finitely generated abelian, it follows by the rank nullity theorem $\left(r k\left(C_{1}\right)=r k\left(k e r \partial_{1}\right)+r k\left(i m \partial_{1}\right)\right.$, where $r k$ is the rank, i.e. number of Z summands), that it suffices to show that L_{1} is linearly independent to verify that L_{1} spans $k e r \partial_{1}$. (We are now viewing all abelian groups as \mathbb{Z}-modules, an analog of vector spaces). However, since the a_{i}, b, c are a basis, it is clear that any linear combination of the elements of L_{1} which equals zero must have the coefficiants of c and b being zero. For this same reason, since the term $a_{n-1}-a_{n}$ is the only term containing an a_{n}, its coefficiant must also be zero. But now the only remaining term containing a_{n-1} is $a_{n-2}-a_{n-1}$, and by the same reasoning its coefficiant must be zero. Cascading thought the terms in this fashion we see that all coefficients must be zero. Hence L_{1} is a basis implying $\operatorname{ker} \partial_{1}=\left\langle L_{1}\right\rangle$. From our original observations we have

$$
i m \partial_{2}=\left\langle\left\{\partial_{2}\left(S_{i}\right), \partial_{2}\left(R_{i}\right)\right\}_{i=1}^{n}\right\rangle=\left\langle\left\{a_{i}-a_{i+1}+b, a_{i}-a_{i+1}+c\right\}_{i=1}^{n}\right\rangle=\left\langle\left\{a_{i}-a_{i+1}+b\right\}_{i=1}^{n}, c-b\right\rangle,
$$

where the second equality comes from the fact that we can combine the elements listed on the RHS to get all elements listed on the LHS. Since indices are $\bmod n$ we have $\sum_{i=1}^{n} a_{i}-a_{i+1}+b=n b$. Hence $i m \partial_{2}=\left\langle\left\{a_{i}-a_{i+1}+b\right\}_{i=1}^{n-1}, c-b, n b\right\rangle$. Thus we see $H_{1}(X)=\left\langle\left\{a_{i+1}-a_{i}\right\}_{i=1}^{n-1}, b, c\right| c-b=$ $\left.0, n b=0, a_{i+1}-a_{i}-b=0, i \leq n-1\right\rangle$, which equals (changing generators, note we can combine new generators to get the old ones) $\left\langle\left\{a_{i+1}-a_{i}-b\right\}_{i=1}^{n-1}, b, c-b \mid c-b=0, n b=0, a_{i+1}-a_{i}-b=0\right\rangle \cong \mathbb{Z}_{n}$.
$H_{2}(X)=k e r \partial_{2} / i m \partial_{3}:$ Note that $\partial_{2}\left(-S_{i}+S_{i+1}+R_{i}-R_{i+1}\right)=\left(-a_{i}+a_{i+1}-c\right)+\left(a_{i+1}-a_{i+2}+\right.$ c) $+\left(a_{i}-a_{i+1}+b\right)+\left(-a_{i+1}+a_{i+2}-b\right)=0$. Hence $L_{2}=\left\{-S_{i}+S_{i+1}+R_{i}-R_{i+1}\right\}_{i=1}^{n-1} \subseteq k e r \partial_{2}$. By the same arguments used for showing L_{1} was linearly independent, we conclude that L_{2} is a linearly independent set of $n-1$ elements. From the last paragraph we can conclude from rank-nullity that $r k\left(i m \partial_{2}\right)=r k\left(k e r \partial_{1}\right)-r k\left(H_{1}(X)\right)=n+1$, implying from rank-nullity that $r k\left(k e r \partial_{2}\right)=r k\left(C_{2}\right)-r k\left(i m \partial_{2}\right)=2 n-(n+1)=n-1=\left|L_{2}\right|$. Thus we see that L_{2} is a basis for ker ∂_{2}. Observing that $\left\{\partial_{3}\left(T_{i}\right)\right\}_{i=1}^{n}=\left\{-S_{i}+S_{i+1}+R_{i}-R_{i+1}\right\}_{i=1}^{n} \supseteq L_{2}$, we conclude that $H_{2}(X)=0$.
$H_{3}(X)=\operatorname{ker} \partial_{3} / i m \partial_{4}=\operatorname{ker} \partial_{3}:$ Again we have (from previous work) $r k\left(i m \partial_{3}\right)=r k\left(k e r \partial_{2}\right)-$ $r k\left(H_{2}\right)=(n-1)-0=n-1$. Hence $r k\left(k e r \partial_{3}\right)=r k\left(C_{3}\right)-r k\left(i m \partial_{3}\right)=n-(n-1)=1$. Thus (since subgroups of free groups are free) we conclude $k e r \partial_{3} \cong \mathbb{Z}$, and so $H_{2}(X) \cong \mathbb{Z}$.

