
HW 7 SOLUTIONS, MA525

1. Hatcher 2.1, Problem 1

Cut along the edge marked with double arrows, and then flip vertically the triangle on the right,
move it to the other side and glue. This shows it to be a mobius band.

2. Hatcher 2.1, Problem 12

Letting F = 0 be the zero-homomorphisms, we see that f# − f# = 0 = ∂0 + 0∂ = ∂F + F∂.
Thus f ∼ f . If f ∼ g, then there exists F such that f# − g# = ∂F + F∂ implying g# − f# =
−∂(F ) + (−F )∂ = ∂(−F ) + (−F )∂ . Thus −F shows that g ∼ f . Finally, assume that f ∼ g and
g ∼ h. Then there exists homomorphisms F, G such that f#−g# = ∂F+F∂ and g#−h# = ∂G+G∂.
If we add these equation we obtain f# − h# = ∂F + F∂ + ∂G + G∂. Since ∂ is a homomorphism
this equals ∂(F + G) + F∂ + G∂, and by definition of F + G this equals ∂(F + G) + (F + G)∂.
Hence F + G shows that f ∼ h. Thus we see ∼ is reflexive, symmetric and transitive, and hence
an equivalence relation.

3. Chapter 2.1, Problem 8

Refer to the picture of X in Hatcher, before the gluing of the lower face of Ti to the upper face of
Ti+1. The terms upper and lower make sense in the picture and we shall use them with impunity.
We shall call the central edge (the axis about which the whole picture can be rotated) as c and it’s
top vertex as 0 and bottom vertex as n + 1. We shall index the vertices in the horizontal plane
from 1 to n.

The gluing identifies 0 with n + 1 to give a single vertex v. It also identifies vertex i to i + 1
which means it identifies all vertices 1 to n to a single vertex w. Thus C0 = 〈v, w〉 ∼= Z2.

Moving onto the edges, there is the “central” vertical edge c. There are n edges [i, 0] on top and
n edges [i, n + 1] on bottom. The gluing process identifies the bottom edge [i, n + 1] with the top
edge [i + 1, 0]. Each such pair gives an edge ai in X. Finally, the horizontal edges running along
the “rim” all get identified to a single edge b. Thus C1 = 〈b, c, ai, i = 1, . . . n〉 ∼= Zn+2.

From the figure in Hatcher, the left face of each Ti is identified with the right face of Ti+1 giving
n vertical faces Si, where ∂(Si) = ai + c− ai+1. The bottom face of Ti is paired with the top face
of Ti+1 by the gluing process, thus giving n horizontal faces Ri, where ∂(Ri) = ai−ai+1 + b. Hence
C2 = 〈Si, Ri, i = 1, . . . n〉 ∼= Z2n.

As neither process identifies tetrahedra, there are still the n 3-simplices Ti, where ∂(Ti) =
Si − Si+1 −Ri + Ri+1. Hence C3 = 〈Ti, i = 1, . . . n〉. There are no 4-simplices, so C4 = 0.
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H0(X) = ker∂0/im∂1: First observe that ∂1(b) = v−v = 0, ∂1(c) = w−w = 0, and ∂1(ai) = w−v.
Also, since ∂0 = 0, it follows that ker∂0 = C0 = 〈v, w〉. Hence

H0(X) = 〈v, w | w − v = 0〉 = 〈w − v, w | w − v = 0〉 ∼= Z.

H1(X) = ker∂1/im∂2: First note as seen above that L1 = {{ai+1 − ai}n−1
i=1 , b, c} are all in ker∂1.

Since rk(im∂1) = 1 (as seen above), and rk(C1) = n + 2, and C1 is finitely generated abelian, it
follows by the rank nullity theorem (rk(C1) = rk(ker∂1) + rk(im∂1), where rk is the rank, i.e.
number of Z summands), that it suffices to show that L1 is linearly independent to verify that L1

spans ker∂1. (We are now viewing all abelian groups as Z-modules, an analog of vector spaces).
However, since the ai, b, c are a basis, it is clear that any linear combination of the elements of
L1 which equals zero must have the coefficiants of c and b being zero. For this same reason, since
the term an−1 − an is the only term containing an an, its coefficiant must also be zero. But now
the only remaining term containing an−1 is an−2 − an−1, and by the same reasoning its coefficiant
must be zero. Cascading thought the terms in this fashion we see that all coefficients must be zero.
Hence L1 is a basis implying ker∂1 = 〈L1〉. From our original observations we have

im∂2 = 〈{∂2(Si), ∂2(Ri)}n
i=1〉 = 〈{ai − ai+1 + b, ai − ai+1 + c}n

i=1〉 = 〈{ai − ai+1 + b}n
i=1, c− b〉,

where the second equality comes from the fact that we can combine the elements listed on the RHS
to get all elements listed on the LHS. Since indices are mod n we have

∑n
i=1 ai − ai+1 + b = nb.

Hence im∂2 = 〈{ai − ai+1 + b}n−1
i=1 , c − b, nb〉. Thus we see H1(X) = 〈{ai+1 − ai}n−1

i=1 , b, c | c− b =
0, nb = 0, ai+1−ai− b = 0, i ≤ n−1〉, which equals (changing generators, note we can combine new
generators to get the old ones) 〈{ai+1−ai−b}n−1

i=1 , b, c−b | c−b = 0, nb = 0, ai+1−ai−b = 0〉 ∼= Zn.

H2(X) = ker∂2/im∂3: Note that ∂2(−Si + Si+1 + Ri −Ri+1) = (−ai + ai+1 − c) + (ai+1 − ai+2 +
c) + (ai − ai+1 + b) + (−ai+1 + ai+2 − b) = 0. Hence L2 = {−Si + Si+1 + Ri − Ri+1}n−1

i=1 ⊆ ker∂2.
By the same arguments used for showing L1 was linearly independent, we conclude that L2 is
a linearly independent set of n − 1 elements. From the last paragraph we can conclude from
rank-nullity that rk(im∂2) = rk(ker∂1) − rk(H1(X)) = n + 1, implying from rank-nullity that
rk(ker∂2) = rk(C2) − rk(im∂2) = 2n − (n + 1) = n − 1 = |L2|. Thus we see that L2 is a basis
for ker∂2. Observing that {∂3(Ti)}n

i=1 = {−Si + Si+1 + Ri − Ri+1}n
i=1 ⊇ L2, we conclude that

H2(X) = 0.

H3(X) = ker ∂3/im∂4 = ker ∂3: Again we have (from previous work) rk(im∂3) = rk(ker∂2) −
rk(H2) = (n − 1) − 0 = n − 1. Hence rk(ker∂3) = rk(C3) − rk(im∂3) = n − (n − 1) = 1. Thus
(since subgroups of free groups are free) we conclude ker∂3

∼= Z, and so H2(X) ∼= Z.
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