HW 9 SOLUTIONS, MA525

Problem 1

(a): First, the exact sequence of pairs:

$$
\cdots \rightarrow H_{n}\left(S^{n} \backslash p t\right) \rightarrow H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n} \backslash p t\right) \rightarrow H_{n-1}\left(S^{n} \backslash p t\right) \rightarrow \cdots
$$

Since $S^{n} \backslash p t$ is contractible, the above sequence gives the isomorphism $H_{n}\left(S^{n}\right) \approx H_{n}\left(S^{n}, S^{n} \backslash p t\right)$. Excision of the sets $S^{n} \backslash U$ and $S^{n} \backslash V$ respectively, gives the isomorphisms: $H_{n}\left(S^{n}, S^{n} \backslash x\right) \approx$ $H_{n}(U, U \backslash x)$ and $H_{n}\left(S^{n}, S^{n} \backslash y\right) \approx H_{n}(V, V \backslash y)$. Thus, fixing a generator α of $H_{n}\left(S^{n}\right)$ gives generators $\bar{\alpha}$ of $H_{n}(U, U \backslash x)$ and $\bar{\alpha}^{\prime}$ of $H_{n}(V, V \backslash y)$.

Now consider the map $H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n} \backslash f^{-1} y\right)$ in the long exact sequence of the pair $\left(S^{n}, S^{n} \backslash f^{-1} y\right)$. There is also the induced map $f_{*}: H_{n}\left(S^{n}, S^{n} \backslash f^{-1} y\right) \rightarrow H_{n}\left(S^{n}, S^{n} \backslash y\right)$. The induced map in homology for the restriction f to the map of pairs: $(U, U \backslash x) \rightarrow(V, V \backslash y)$ is the composite $H_{n}(U, U \backslash x) \approx H_{n}\left(S^{n}, S^{n} \backslash x\right) \approx H_{n}\left(S^{n}\right) \rightarrow H_{n}\left(S^{n}, S^{n} \backslash f^{-1} y\right) \rightarrow H_{n}\left(S^{n}, S^{n} \backslash y\right) \rightarrow H_{n}(V, V \backslash y)$. So the local degree is independent of the choice of generator of $H_{n}\left(S^{n}\right)$.
(b): Suppose U^{\prime} and V^{\prime} are different open neighborhoods of x and y such that f restricted to U^{\prime} is a homeomorphism with $f\left(U^{\prime}\right) \subset V^{\prime}$. By Excision, there are isomorphisms $H_{n}(U, U \backslash x) \approx$ $H_{n}\left(U \cup U^{\prime}, U \cup U^{\prime} \backslash x\right)$ and $H_{n}(V, V \backslash y) \approx H_{n}\left(V \cup V^{\prime}, V \cup V^{\prime} \backslash y\right)$, and the induced maps f_{*} commutes with these isomorphisms. So, the local degree $\operatorname{deg}_{x} f$ is independent of the choice of open sets.
(c): Taylor's theorem with remainders implies that there exists a positive constant c and an open set V around x, such that the remainder $f(v)-a(v)$ satisfies $\|f(v)-a(v)\| \leq c\|v-x\|^{2}$ for all $v \in V$. For the radius $r=\|D f\| / 2 c$, where $\|D f\|$ is the norm of the derivative of f at x, let $B(x, r)$ be the open ball centered at x of radius r. Set $U=B(x, r) \cap V$. For all $v \in U$, we have the estimate for the remainder

$$
\|f(v)-a(v)\| \leq c\|v-x\|^{2}<\frac{\|D f\|}{2}\|v-x\|
$$

By the triangle inequality, we get the estimate

$$
\begin{aligned}
\|a(v)-y\| & >\|D f\| \cdot\|v-x\|-c\|v-x\|^{2} \\
& \geq\|D f\| \cdot\|v-x\|-c\left(\frac{\|D f\|}{2 c}\right)\|v-x\| \\
& =\frac{\|D f\|}{2}\|v-x\|
\end{aligned}
$$

This implies that the straight line segment joining $f(v)$ and $a(v)$ is disjoint from y. Hence the straight line homotopy between $f(v)$ and $a(v)$ on U is a homotopy of pairs $a, f:(U, U \backslash x) \rightarrow$ $\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash y\right)$.

This in turn shows that $d e g_{x} f=\operatorname{de} g_{0} D f$.
(d): Consider the process of Guassian elimination on T to get a diagonal matrix with ± 1 on the diagonal. The desired elimination can be achieved by a sequence of row reductions of the form: $R_{i} \rightarrow a R_{i}+b R_{j}$ where $a>0$. So it is enough to show that one can interpolate between an invertible matrix and the matrix after a basic row operation as above, through a family of invertible matrices. But this is obvious: just linear interpolate between R_{i} and $a R_{i}+b R_{j}$. The resulting matrices remain invertible.

Problem 2

(a): It suffices to compute $\operatorname{deg}_{\infty} f$. There exists a radius R large enough so that if U is the set of complex numbers z with $|z|>R$, then f is homotopic to z^{n} as a map of pairs: $(U, U \backslash \infty) \rightarrow$ $\left(S^{2}, S^{2} \backslash \infty\right)$. So $d e g_{\infty} f=\operatorname{deg} g_{\infty} z^{n}=n$.
(b): Standard complex analysis shows that the number of roots of f has to be finite (otherwise there is a convergent sequence, whose limit should also be a root. Then by the appropriate theorem from complex analysis f ha to be a constant map). So we can choose a small enough neighborhood V of 0 such that for distinct roots $w_{1} \neq w_{2}$, the preimages of V containing w_{1} and w_{2} are disjoint. Shrinking V further if necessary, we can arrange that when w is a root of multiplicity k, the number of pre-images of $z \neq 0 \in V$ in the neighborhood $U=f^{-1} V$ containing w is k. Therefore, by part (a), adding the multiplicities of the roots gives n.

Problem 3

Embed S^{n} in \mathbb{R}^{n+1} in the standard way, and let p be the projecting in \mathbb{R}^{n+1} to the first n coordinates. The restriction of p to S^{n} maps it onto the unit ball \mathbb{D}^{n} in \mathbb{R}^{n}. Let q be the quotient map $\mathbb{D}^{n} \rightarrow \mathbb{D}^{n} / S^{n-1}=S^{n}$. The composition $q \circ p$ defines a map $S^{n} \rightarrow S^{n}$. The induced map on $H_{n}\left(S^{n}\right)$ factors through $H_{n}\left(\mathbb{D}^{n}\right)=0$, and so has degree 0 .

Hatcher 2.2 Problem 11

Recall the cell structure of the space X. It has two 0 -cells marked u and v, four 1 -cells marked a, b, c, d, three 2 -cells marked E, F, G and a single 3 -cell given by the cube I itself.

Figure 1. cell structure

We use Theorem 2.35 from Hatcher to compute the homology. First, we compute the cellular chain complex and the boundary maps.

$$
\begin{aligned}
C_{4} & =0 \\
C_{3} & =\mathbb{Z} I \\
C_{2} & =\mathbb{Z} E \oplus \mathbb{Z} F \oplus \mathbb{Z} G \\
C_{1} & =\mathbb{Z} a \oplus \mathbb{Z} b \oplus \mathbb{Z} c \oplus \mathbb{Z} d \\
C_{0} & =\mathbb{Z} u \oplus \mathbb{Z} v \\
& 2
\end{aligned}
$$

The boundary maps are

$$
\begin{aligned}
\partial_{4} & =0 \\
\partial_{3} I & =0 \\
\partial_{2} E & =a+b+c+d, \quad \partial_{2} F=a+d-b-c, \quad \partial_{2} G=a-c-d+b \\
\partial_{1} a & =v-u, \partial_{1} b=u-v, \partial_{1} c=v-u, \partial_{1} d=u-v
\end{aligned}
$$

The boundary map $\partial_{3} I=0$ because each pair of opposite faces, for instance the front and the back face, are equal to $\pm E$ (with opposite signs) after the gluing. Hence, E cancels off with $-E$ in computing the boundary.

Finally, the homology computations:

$$
\begin{aligned}
H_{3}(X) & =\operatorname{Ker} \partial_{3} / \operatorname{Im} \partial_{4} \approx \mathbb{Z} \\
\operatorname{Ker} \partial_{2} & =0 \text { by rank calculation on the matrix, } H_{2}(X)=0 \\
\operatorname{Ker} \partial_{1} & =\mathbb{Z}(a+b) \oplus \mathbb{Z}(b+c) \oplus \mathbb{Z}(c+d)=\mathbb{Z} x_{1} \oplus \mathbb{Z} x_{2} \oplus \mathbb{Z} x_{3}, \\
\operatorname{Im} \partial_{2} & =\operatorname{Span}\left(x_{1}+x_{3}, x_{1}-2 x_{2}+x_{3}, x_{1}-x_{3}\right)=\operatorname{Span}\left(x_{1}+x_{3}, 2 x_{2}, 2 x_{1}\right), \\
\text { So } H_{1}(X) & =\operatorname{Ker} \partial_{1} / \operatorname{Im} \partial_{2} \approx \mathbb{Z}_{2} \times \mathbb{Z}_{2} \\
\operatorname{Im} \partial_{1} & =\mathbb{Z}(u-v), \text { So } H_{0}(X) \approx \mathbb{Z}
\end{aligned}
$$

