
HW 9 SOLUTIONS, MA525

Problem 1

(a): First, the exact sequence of pairs:

· · · → Hn(Sn \ pt) → Hn(Sn) → Hn(Sn, Sn \ pt) → Hn−1(Sn \ pt) → · · ·
Since Sn \ pt is contractible, the above sequence gives the isomorphism Hn(Sn) ≈ Hn(Sn, Sn \ pt).
Excision of the sets Sn \ U and Sn \ V respectively, gives the isomorphisms: Hn(Sn, Sn \ x) ≈
Hn(U,U \ x) and Hn(Sn, Sn \ y) ≈ Hn(V, V \ y). Thus, fixing a generator α of Hn(Sn) gives
generators α of Hn(U,U \ x) and α′ of Hn(V, V \ y).

Now consider the map Hn(Sn) → Hn(Sn, Sn \ f−1y) in the long exact sequence of the pair
(Sn, Sn\f−1y). There is also the induced map f∗ : Hn(Sn, Sn\f−1y) → Hn(Sn, Sn\y). The induced
map in homology for the restriction f to the map of pairs: (U,U \ x) → (V, V \ y) is the composite
Hn(U,U \ x) ≈ Hn(Sn, Sn \ x) ≈ Hn(Sn) → Hn(Sn, Sn \ f−1y) → Hn(Sn, Sn \ y) → Hn(V, V \ y).
So the local degree is independent of the choice of generator of Hn(Sn).

(b): Suppose U ′ and V ′ are different open neighborhoods of x and y such that f restricted to
U ′ is a homeomorphism with f(U ′) ⊂ V ′. By Excision, there are isomorphisms Hn(U,U \ x) ≈
Hn(U∪U ′, U∪U ′\x) and Hn(V, V \y) ≈ Hn(V ∪V ′, V ∪V ′\y), and the induced maps f∗ commutes
with these isomorphisms. So, the local degree degxf is independent of the choice of open sets.

(c): Taylor’s theorem with remainders implies that there exists a positive constant c and an open
set V around x, such that the remainder f(v)− a(v) satisfies ‖ f(v)− a(v) ‖≤ c ‖ v − x ‖2 for all
v ∈ V . For the radius r =‖ Df ‖ /2c, where ‖ Df ‖ is the norm of the derivative of f at x, let
B(x, r) be the open ball centered at x of radius r. Set U = B(x, r)∩ V . For all v ∈ U , we have the
estimate for the remainder

‖ f(v)− a(v) ‖≤ c ‖ v − x ‖2<
‖ Df ‖

2
‖ v − x ‖

By the triangle inequality, we get the estimate

‖ a(v)− y ‖ > ‖ Df ‖ · ‖ v − x ‖ −c ‖ v − x ‖2

≥ ‖ Df ‖ · ‖ v − x ‖ −c

(‖ Df ‖
2c

)
‖ v − x ‖

=
‖ Df ‖

2
‖ v − x ‖

This implies that the straight line segment joining f(v) and a(v) is disjoint from y. Hence the
straight line homotopy between f(v) and a(v) on U is a homotopy of pairs a, f : (U,U \ x) →
(Rn,Rn \ y).

This in turn shows that degxf = deg0Df .

(d): Consider the process of Guassian elimination on T to get a diagonal matrix with ±1 on the
diagonal. The desired elimination can be achieved by a sequence of row reductions of the form:
Ri → aRi+bRj where a > 0. So it is enough to show that one can interpolate between an invertible
matrix and the matrix after a basic row operation as above, through a family of invertible matrices.
But this is obvious: just linear interpolate between Ri and aRi+bRj . The resulting matrices remain
invertible.
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Problem 2

(a): It suffices to compute deg∞f . There exists a radius R large enough so that if U is the set
of complex numbers z with | z |> R, then f is homotopic to zn as a map of pairs: (U,U \ ∞) →
(S2, S2 \∞). So deg∞f = deg∞zn = n.

(b): Standard complex analysis shows that the number of roots of f has to be finite (otherwise
there is a convergent sequence, whose limit should also be a root. Then by the appropriate theorem
from complex analysis f ha to be a constant map). So we can choose a small enough neighborhood
V of 0 such that for distinct roots w1 6= w2, the preimages of V containing w1 and w2 are disjoint.
Shrinking V further if necessary, we can arrange that when w is a root of multiplicity k, the number
of pre-images of z 6= 0 ∈ V in the neighborhood U = f−1V containing w is k. Therefore, by part
(a), adding the multiplicities of the roots gives n.

Problem 3

Embed Sn in Rn+1 in the standard way, and let p be the projecting in Rn+1 to the first n co-
ordinates. The restriction of p to Sn maps it onto the unit ball Dn in Rn. Let q be the quotient
map Dn → Dn/Sn−1 = Sn. The composition q ◦ p defines a map Sn → Sn. The induced map on
Hn(Sn) factors through Hn(Dn) = 0, and so has degree 0.

Hatcher 2.2 Problem 11

Recall the cell structure of the space X. It has two 0-cells marked u and v, four 1-cells marked
a, b, c, d, three 2-cells marked E,F, G and a single 3-cell given by the cube I itself.

Figure 1. cell structure
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We use Theorem 2.35 from Hatcher to compute the homology. First, we compute the cellular
chain complex and the boundary maps.

C4 = 0
C3 = ZI

C2 = ZE ⊕ ZF ⊕ ZG

C1 = Za⊕ Zb⊕ Zc⊕ Zd

C0 = Zu⊕ Zv
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The boundary maps are

∂4 = 0
∂3I = 0
∂2E = a + b + c + d, ∂2F = a + d− b− c, ∂2G = a− c− d + b

∂1a = v − u, ∂1b = u− v, ∂1c = v − u, ∂1d = u− v

The boundary map ∂3I = 0 because each pair of opposite faces, for instance the front and the
back face, are equal to ±E (with opposite signs) after the gluing. Hence, E cancels off with −E in
computing the boundary.

Finally, the homology computations:

H3(X) = Ker∂3/Im∂4 ≈ Z
Ker∂2 = 0 by rank calculation on the matrix, H2(X) = 0
Ker∂1 = Z(a + b)⊕ Z(b + c)⊕ Z(c + d) = Zx1 ⊕ Zx2 ⊕ Zx3,

Im∂2 = Span(x1 + x3, x1 − 2x2 + x3, x1 − x3) = Span(x1 + x3, 2x2, 2x1),
So H1(X) = Ker∂1/Im∂2 ≈ Z2 × Z2

Im∂1 = Z(u− v), So H0(X) ≈ Z
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