HW 9 SOLUTIONS, MA525

Problem 1

(a): First, the exact sequence of pairs:

$$\cdots \to H_n(S^n \setminus pt) \to H_n(S^n) \to H_n(S^n, S^n \setminus pt) \to H_{n-1}(S^n \setminus pt) \to \cdots$$

Since $S^n \setminus pt$ is contractible, the above sequence gives the isomorphism $H_n(S^n) \approx H_n(S^n, S^n \setminus pt)$. Excision of the sets $S^n \setminus U$ and $S^n \setminus V$ respectively, gives the isomorphisms: $H_n(S^n, S^n \setminus x) \approx H_n(U, U \setminus x)$ and $H_n(S^n, S^n \setminus y) \approx H_n(V, V \setminus y)$. Thus, fixing a generator α of $H_n(S^n)$ gives generators $\overline{\alpha}$ of $H_n(U, U \setminus x)$ and $\overline{\alpha}'$ of $H_n(V, V \setminus y)$.

Now consider the map $H_n(S^n) \to H_n(S^n, S^n \setminus f^{-1}y)$ in the long exact sequence of the pair $(S^n, S^n \setminus f^{-1}y)$. There is also the induced map $f_* : H_n(S^n, S^n \setminus f^{-1}y) \to H_n(S^n, S^n \setminus y)$. The induced map in homology for the restriction f to the map of pairs: $(U, U \setminus x) \to (V, V \setminus y)$ is the composite $H_n(U, U \setminus x) \approx H_n(S^n, S^n \setminus x) \approx H_n(S^n) \to H_n(S^n, S^n \setminus f^{-1}y) \to H_n(S^n, S^n \setminus y) \to H_n(V, V \setminus y)$. So the local degree is independent of the choice of generator of $H_n(S^n)$.

(b): Suppose U' and V' are different open neighborhoods of x and y such that f restricted to U' is a homeomorphism with $f(U') \subset V'$. By Excision, there are isomorphisms $H_n(U, U \setminus x) \approx H_n(U \cup U', U \cup U' \setminus x)$ and $H_n(V, V \setminus y) \approx H_n(V \cup V', V \cup V' \setminus y)$, and the induced maps f_* commutes with these isomorphisms. So, the local degree $deg_x f$ is independent of the choice of open sets.

(c): Taylor's theorem with remainders implies that there exists a positive constant c and an open set V around x, such that the remainder f(v) - a(v) satisfies $|| f(v) - a(v) || \le c || v - x ||^2$ for all $v \in V$. For the radius r = || Df || /2c, where || Df || is the norm of the derivative of f at x, let B(x, r) be the open ball centered at x of radius r. Set $U = B(x, r) \cap V$. For all $v \in U$, we have the estimate for the remainder

$$|| f(v) - a(v) || \le c || v - x ||^2 < \frac{|| Df ||}{2} || v - x ||$$

By the triangle inequality, we get the estimate

$$\begin{array}{ll} \| \ a(v) - y \| &> \ \| \ Df \| \cdot \| \ v - x \| - c \| \ v - x \|^2 \\ \\ \geq & \| \ Df \| \cdot \| \ v - x \| - c \left(\frac{\| \ Df \|}{2c} \right) \| \ v - x \| \\ \\ = & \frac{\| \ Df \|}{2} \| \ v - x \| \end{array}$$

This implies that the straight line segment joining f(v) and a(v) is disjoint from y. Hence the straight line homotopy between f(v) and a(v) on U is a homotopy of pairs $a, f : (U, U \setminus x) \to (\mathbb{R}^n, \mathbb{R}^n \setminus y)$.

This in turn shows that $deg_x f = deg_0 D f$.

(d): Consider the process of Guassian elimination on T to get a diagonal matrix with ± 1 on the diagonal. The desired elimination can be achieved by a sequence of row reductions of the form: $R_i \rightarrow aR_i + bR_j$ where a > 0. So it is enough to show that one can interpolate between an invertible matrix and the matrix after a basic row operation as above, through a family of invertible matrices. But this is obvious: just linear interpolate between R_i and $aR_i + bR_j$. The resulting matrices remain invertible.

Problem 2

(a): It suffices to compute $deg_{\infty}f$. There exists a radius R large enough so that if U is the set of complex numbers z with |z| > R, then f is homotopic to z^n as a map of pairs: $(U, U \setminus \infty) \to (S^2, S^2 \setminus \infty)$. So $deg_{\infty}f = deg_{\infty}z^n = n$.

(b): Standard complex analysis shows that the number of roots of f has to be finite (otherwise there is a convergent sequence, whose limit should also be a root. Then by the appropriate theorem from complex analysis f has to be a constant map). So we can choose a small enough neighborhood V of 0 such that for distinct roots $w_1 \neq w_2$, the preimages of V containing w_1 and w_2 are disjoint. Shrinking V further if necessary, we can arrange that when w is a root of multiplicity k, the number of pre-images of $z \neq 0 \in V$ in the neighborhood $U = f^{-1}V$ containing w is k. Therefore, by part (a), adding the multiplicities of the roots gives n.

Problem 3

Embed S^n in \mathbb{R}^{n+1} in the standard way, and let p be the projecting in \mathbb{R}^{n+1} to the first n coordinates. The restriction of p to S^n maps it onto the unit ball \mathbb{D}^n in \mathbb{R}^n . Let q be the quotient map $\mathbb{D}^n \to \mathbb{D}^n / S^{n-1} = S^n$. The composition $q \circ p$ defines a map $S^n \to S^n$. The induced map on $H_n(S^n)$ factors through $H_n(\mathbb{D}^n) = 0$, and so has degree 0.

HATCHER 2.2 PROBLEM 11

Recall the cell structure of the space X. It has two 0-cells marked u and v, four 1-cells marked a, b, c, d, three 2-cells marked E, F, G and a single 3-cell given by the cube I itself.

FIGURE 1. cell structure

We use Theorem 2.35 from Hatcher to compute the homology. First, we compute the cellular chain complex and the boundary maps.

$$C_4 = 0$$

$$C_3 = \mathbb{Z}I$$

$$C_2 = \mathbb{Z}E \oplus \mathbb{Z}F \oplus \mathbb{Z}G$$

$$C_1 = \mathbb{Z}a \oplus \mathbb{Z}b \oplus \mathbb{Z}c \oplus \mathbb{Z}d$$

$$C_0 = \mathbb{Z}u \oplus \mathbb{Z}v$$

The boundary maps are

$$\partial_4 = 0$$

$$\partial_3 I = 0$$

$$\partial_2 E = a + b + c + d, \ \partial_2 F = a + d - b - c, \ \partial_2 G = a - c - d + b$$

$$\partial_1 a = v - u, \ \partial_1 b = u - v, \ \partial_1 c = v - u, \ \partial_1 d = u - v$$

The boundary map $\partial_3 I = 0$ because each pair of opposite faces, for instance the front and the back face, are equal to $\pm E$ (with opposite signs) after the gluing. Hence, E cancels off with -E in computing the boundary.

Finally, the homology computations:

$$\begin{aligned} H_3(X) &= Ker\partial_3/Im\partial_4 \approx \mathbb{Z} \\ Ker\partial_2 &= 0 \text{ by rank calculation on the matrix, } H_2(X) = 0 \\ Ker\partial_1 &= \mathbb{Z}(a+b) \oplus \mathbb{Z}(b+c) \oplus \mathbb{Z}(c+d) = \mathbb{Z}x_1 \oplus \mathbb{Z}x_2 \oplus \mathbb{Z}x_3, \\ Im\partial_2 &= Span(x_1+x_3, x_1-2x_2+x_3, x_1-x_3) = Span(x_1+x_3, 2x_2, 2x_1), \\ \text{So } H_1(X) &= Ker\partial_1/Im\partial_2 \approx \mathbb{Z}_2 \times \mathbb{Z}_2 \\ Im\partial_1 &= \mathbb{Z}(u-v), \text{ So } H_0(X) \approx \mathbb{Z} \end{aligned}$$