Math 530: Problem Set 10

Due date: In class on Wednesday, April 29. **Course Web Page:** http://dunfield.info/530

- 1. Let *q* be a non-degenerate quadratic form on \mathbb{Q}_p^n . For $a \in \mathbb{Q}_p^{\times}$, show that *q* represents *a* if and only if:
 - (a) n = 1 and a = d,
 - (b) n = 2 and $(a, -d) = \epsilon$,
 - (c) n = 3 and either $a \neq -d$ or $(a = -d \text{ and } (-1, -d) = \epsilon)$,
 - (d) $n \ge 4$.

Here, equalities between a and d are as elements of $\mathbb{Q}_p^{\times}/(\mathbb{Q}_p^{\times})^2$.

- 2. Show that, up to isometry, there is a unique quadratic form on \mathbb{Q}_p^4 which does not represent 0, namely the form $x^2 ay^2 bz^2 + abt^2$, where *a* and *b* are such that (a, b) = -1.
- 3. A quadratic form q on \mathbb{Q}^k is *matrix-integral* if there exists a basis in which the Gramm matrix of the associated bilinear form has integral entries. The form q is *positive definite* if it is equivalent over \mathbb{R} to $x_1^2 + \cdots + x_k^2$.

Let *q* be a positive definite matrix-integral quadratic form on \mathbb{Q}^k , and fix a basis where the Gramm matrix of *q* is integral. Assume that for every $x \in \mathbb{Q}^k$ there is a $y \in \mathbb{Z}^k$ such that q(x - y) < 1. Fix *n* in \mathbb{Z} . Prove that if *q* represents *n* on \mathbb{Q}^k it also does so on \mathbb{Z}^k .

4. Combine Problem 3 with the Hasse-Minkowski Theorem to prove the following classical result of Fermat:

Let $n \in \mathbb{N}$. The following conditions are equivalent:

- (a) The integer *n* is the sum of two squares of elements of \mathbb{Z} .
- (b) The integer n is the sum of two squares of elements of \mathbb{Q} .
- (c) For every prime factor *p* of *n* such that $p \equiv 3 \pmod{4}$, we have $v_p(n)$ is even. (Here $v_p(n)$ is the exponent of *p* in the factorization of *n*.)