Math 530: Problem Set 10

Due date: In class on Wednesday, April 29.
Course Web Page: http://dunfield.info/530

1. Let q be a non-degenerate quadratic form on \mathbb{Q}_{p}^{n}. For $a \in \mathbb{Q}_{p}^{\times}$, show that q represents a if and only if:
(a) $n=1$ and $a=d$,
(b) $n=2$ and $(a,-d)=\epsilon$,
(c) $n=3$ and either $a \neq-d$ or $(a=-d$ and $(-1,-d)=\epsilon)$,
(d) $n \geq 4$.

Here, equalities between a and d are as elements of $\mathbb{Q}_{p}^{\times} /\left(\mathbb{Q}_{p}^{\times}\right)^{2}$.
2. Show that, up to isometry, there is a unique quadratic form on \mathbb{Q}_{p}^{4} which does not represent 0 , namely the form $x^{2}-a y^{2}-b z^{2}+a b t^{2}$, where a and b are such that $(a, b)=-1$.
3. A quadratic form q on \mathbb{Q}^{k} is matrix-integral if there exists a basis in which the Gramm matrix of the associated bilinear form has integral entries. The form q is positive definite if it is equivalent over \mathbb{R} to $x_{1}^{2}+\cdots+x_{k}^{2}$.
Let q be a positive definite matrix-integral quadratic form on \mathbb{Q}^{k}, and fix a basis where the Gramm matrix of q is integral. Assume that for every $x \in \mathbb{Q}^{k}$ there is a $y \in \mathbb{Z}^{k}$ such that $q(x-y)<1$. Fix n in \mathbb{Z}. Prove that if q represents n on \mathbb{Q}^{k} it also does so on \mathbb{Z}^{k}.
4. Combine Problem 3 with the Hasse-Minkowski Theorem to prove the following classical result of Fermat:
Let $n \in \mathbb{N}$. The following conditions are equivalent:
(a) The integer n is the sum of two squares of elements of \mathbb{Z}.
(b) The integer n is the sum of two squares of elements of \mathbb{Q}.
(c) For every prime factor p of n such that $p \equiv 3(\bmod 4)$, we have $v_{p}(n)$ is even. (Here $v_{p}(n)$ is the exponent of p in the factorization of n.)

