Math 530: Final Problem Set.¹

All quaternions, all the time.

Due date: In class on Wednesday, May 6.

Reminder: Our final will be on Thursday, May 14 from 8-11am in our usual classroom.

- 1. Let *K* be a field of characteristic $\neq 2$, and chose $a, b \in K^{\times}$. Consider the following associative algebra over *K*: let *A* be the *K* vector space with basis $\{1, i, j, k\}$ and multiplication determined by $i^2 = a, j^2 = b$, and ij = -ji = k. The algebra *A* is called a *quaternion algebra*, and these are very important examples in number theory. The algebra *A* is sometimes denoted by its *Hilbert symbol* $\left(\frac{a,b}{K}\right)$. For instance, Hamilton's original, accept no substitutes, quaternions are $\mathcal{H} = \left(\frac{-1,-1}{\mathbb{R}}\right)$.
 - (a) Prove that $M_2(K)$, the algebra of 2×2 matrices is a quaternion algebra. Hint: It's $\left(\frac{1,1}{K}\right)$.
 - (b) Different Hilbert symbols can give rise to isomorphic quaternion algebras. Give an example.
 - (c) Prove that the only quaternion algebra over \mathbb{C} is $M_2(\mathbb{C})$ and the only two over \mathbb{R} are $M_2(\mathbb{R})$ and \mathcal{H} .
- 2. Let $A = \left(\frac{a,b}{K}\right)$. For $\alpha = w + xi + yj + zk$, define its conjugate to be $\overline{\alpha} = w xi yj zk$. Then we can define the *norm* $\mathcal{N} : A \to K$ by $\mathcal{N}(\alpha) = \alpha \overline{\alpha}$ and *trace* tr: $A \to K$ by $\alpha + \overline{\alpha}$.
 - (a) Calculate the norm and trace explicitly for \mathcal{H} .
 - (b) Show that \mathcal{N} gives a quadratic form on A, which is diagonal with respect to the standard basis $\{1, i, j, k\}$.
 - (c) Show that the norm and trace are multiplicative and additive, respectively. Hint: There's a nice formula for $\overline{\alpha\beta}$, which typically isn't equal to $\overline{\alpha\beta}$.
 - (d) What standard quantities are the norm and trace on $M_2(K)$?
 - (e) The subspace $A_0 = \{\alpha \in A \mid tr(\alpha) = 0\}$ is called the *pure quaternions*. For Hamilton's quaternions, we have $\mathscr{H}_0 \cong \mathbb{R}^3$. Prove that quaternion multiplication on \mathscr{H}_0 is a combination of the usual dot and cross products as follows: $\alpha\beta = \alpha \times \beta \alpha \cdot \beta$. This is the source of the convention in vector calculus that the standard basis of \mathbb{R}^3 is $\{i, j, k\}$.
- 3. Recall that an algebra is a *division algebra* if every nonzero element has a multiplicative inverse². Let $A = \begin{pmatrix} a,b \\ K \end{pmatrix}$. It is not hard to show that *A* is a central simple algebra over *K*; thus by Wedderburn's theorem it is either $M_2(K)$ or a division algebra. Prove that the following are equivalent:
 - (a) $A \cong M_2(K)$; equivalently, *A* is not a division algebra.
 - (b) The norm form on *A* has an isotropic vector.
 - (c) The norm form on A_0 has an isotropic vector.
 - (d) The usual Hilbert symbol (a, b) = 1.

¹Revised May 1, 2009 to fix problem 2(e).

²A synonym for division algebra is "noncommutative field" which is a good way to think about such objects.