Math 530: Problem Set 6

Due date: In class on Friday, March 20.
Course Web Page: http://dunfield.info/530
Warning: This assignment is longer than it appears; the first problem has not less than 9 parts.

1. Marcus, Chapter 4, Problem 17.
2. Marcus, Chapter 4, Problem 27.
3. Let K be a number field, $t>0$ in \mathbb{R}. Show that the convex, centrally symmetric set

$$
X=\left\{\left(z_{\tau}\right) \in K_{\mathbb{R}}\left|\sum_{\tau}\right| z_{\tau} \mid<t\right\}
$$

has (canonical) volume $2^{r} \pi^{s} t^{n} / n!$. Hint: One approach is to induct on r and s.
4. Let \mathfrak{a} be an ideal of \mathscr{O}_{K}. Using only theorems stated in class, prove there exists an $a \neq 0$ in \mathfrak{a} such that

$$
\left|\mathscr{N}_{K / \mathbb{Q}}(a)\right| \leq M \mathscr{N}(\mathfrak{a}) \quad \text { where } M=\frac{n!}{n^{n}}\left(\frac{4}{\pi}\right)^{s} \sqrt{\left|\Delta_{K}\right|} .
$$

This is the Minkowski Bound, infamous on the 530 comp exams.
Hint: Use problem 3 and the inequality between the arithmetic and geometric means:

$$
\frac{1}{n} \sum_{\tau}\left|z_{\tau}\right| \geq\left(\prod_{\tau}\left|z_{\tau}\right|\right)^{1 / n}
$$

