Math 530: Problem Set 7

Due date: In class on Wednesday, April 8. **Course Web Page:** http://dunfield.info/530

- 1. In this problem, you'll consider the connection between the discriminant and the degree of a number field.
 - (a) Show that the only number field *K* with $|\Delta_K| = 1$ is \mathbb{Q} . An immediate consequence is that for any number field $K \neq \mathbb{Q}$ there is some rational prime that ramifies in \mathcal{O}_K .
 - (b) Show that $|\Delta_K| \to \infty$ as $[K : \mathbb{Q}] \to \infty$.
- 2. Let *K* be a number field and $\mathfrak{a} \subset \mathcal{O}_K$ an ideal.
 - (a) Prove there exists a finite extension *L* of *K* so that \mathfrak{aO}_L is principle.
 - (b) Does there always exists a finite extension *L* in which *every* ideal of \mathcal{O}_K becomes principle in \mathcal{O}_L ? Prove your answer.
- 3. For a number field *K*, the order of the ideal class group is called the *class number* and usually denoted *h*. Show that the quadratic fields with discriminant 5, 8, 12, -3, -4, -7, -8, -11 have class number 1.
- 4. Show that the class groups of $\mathbb{Q}(\sqrt{10})$ and $\mathbb{Q}(\sqrt{-10})$ are both $\mathbb{Z}/2\mathbb{Z}$.
- 5. Compute the class group of $\mathbb{Q}(\sqrt[3]{7})$.
- 6. Let *K* be a totally real number field, i.e. the image of every embedding $K \to \mathbb{C}$ is contained in \mathbb{R} . Let *T* be a proper nonempty subset of the set of embeddings $\tau \colon K \to \mathbb{R}$. Prove there exists a unit $\epsilon \in \mathcal{O}_K^{\times}$ satisfying $0 < \tau(\epsilon) < 1$ for $\tau \in T$ and $\tau(\epsilon) > 1$ for $\tau \notin T$.

Hint: Apply Minowski's lattice point theorem to the image of the unit lattice in the tracezero subspace.