Math 530: Problem Set 8¹

Due date: In class on Wednesday, April 15. **Course Web Page:** http://dunfield.info/530

- 1. Write $\frac{2}{3}$ and $-\frac{2}{3}$ as elements of \mathbb{Z}_5 .
- 2. Using the definition of \mathbb{Z}_p as the inverse limit of $\mathbb{Z}/p^k\mathbb{Z}$, prove that the ideals of \mathbb{Z}_p are exactly the principal ideals $p^n\mathbb{Z}_p$ for $n \in \mathbb{Z}_{\geq 0}$. Thus \mathbb{Z}_p is a PID.
- 3. In Q_5 , prove that

$$\sqrt{-1} = \frac{1}{2} \sum_{n=0}^{\infty} (-1)^n {\binom{\frac{1}{2}}{n}} 5^n \quad \text{where} \quad {\binom{r}{n}} = \frac{r(r-1)(r-2)\cdots(r-n+1)}{n!} \quad \text{for any } r \in \mathbb{C}.$$

- 4. Recall a valuation on a field *K* is a function $|\cdot|: K \to \mathbb{R}_{\geq 0}$ where
 - (a) $|x| = 0 \iff x = 0$
 - (b) |xy| = |x||y|
 - (c) $|x+y| \le |x| + |y|$

Note that $|\cdot|$ is always ≥ 0 ; I forgot to mention this when I defined valuations in class. A valuation is *archimedean* if |n| is unbounded for $n \in \mathbb{N}$. Conversely, if |n| is bounded it is *nonarchimdean*.

Prove that $|\cdot|$ is nonarchimedean if and only if $|x + y| \le \max\{|x|, |y|\}$ for all $x, y \in K$.

- 5. Suppose $|\cdot|$ is a nonarchimedean valuation on a field *K*. The topology on *K* induced by d(x, y) = |x y| is decidedly odd, as you'll now demonstrate.
 - (a) Denote the ball about $a \in K$ of radius $r \in \mathbb{R}_{>0}$ by

$$B_r(a) = \{ x \in K \mid |x - a| < r \}.$$

Prove that if $b \in B_r(a)$ then $B_r(b) = B_r(a)$. Deduce that if two balls meet, then the larger radius one contains the smaller.

- (b) Prove that (*K*, *d*) is totally disconnected, that is every open set is the *disjoint* union of two nonempty open sets.
- (c) Assume (K, d) is a complete metric space, i.e. every Cauchy sequence converges. Prove that for $a_n \in K$, the series $\sum a_n$ converges if and only if $a_n \to 0$.²
- 6. Show that $5x^3 7x^2 + 3x + 6$ has a root $\alpha \in \mathbb{Z}_7$ with $|\alpha 1|_7 < 1$. Find $a \in \mathbb{Z}$ such that $|\alpha a|_7 \le 7^{-4}$.
- 7. Prove that \mathbb{Q}_p contains the $(p-1)^{\text{st}}$ roots of unity. Does it contain any other roots of unity?

¹Revision of April 15, 2009; Changes: Clarified problem 4.

²If only this were true for $K = \mathbb{R}$, then teaching Calc II would be much easier...