Math 530: Problem Set 8^{1}

Due date: In class on Wednesday, April 15.
Course Web Page: http://dunfield.info/530

1. Write $\frac{2}{3}$ and $-\frac{2}{3}$ as elements of \mathbb{Z}_{5}.
2. Using the definition of \mathbb{Z}_{p} as the inverse limit of $\mathbb{Z} / p^{k} \mathbb{Z}$, prove that the ideals of \mathbb{Z}_{p} are exactly the principal ideals $p^{n} \mathbb{Z}_{p}$ for $n \in \mathbb{Z}_{\geq 0}$. Thus \mathbb{Z}_{p} is a PID.
3. In \mathbb{Q}_{5}, prove that

$$
\sqrt{-1}=\frac{1}{2} \sum_{n=0}^{\infty}(-1)^{n}\binom{\frac{1}{2}}{n} 5^{n} \quad \text { where } \quad\binom{r}{n}=\frac{r(r-1)(r-2) \cdots(r-n+1)}{n!} \quad \text { for any } r \in \mathbb{C} .
$$

4. Recall a valuation on a field K is a function $|\cdot|: K \rightarrow \mathbb{R}_{\geq 0}$ where
(a) $|x|=0 \Longleftrightarrow x=0$
(b) $|x y|=|x||y|$
(c) $|x+y| \leq|x|+|y|$

Note that $|\cdot|$ is always ≥ 0; I forgot to mention this when I defined valuations in class.
A valuation is archimedean if $|n|$ is unbounded for $n \in \mathbb{N}$. Conversely, if $|n|$ is bounded it is nonarchimdean.
Prove that $|\cdot|$ is nonarchimedean if and only if $|x+y| \leq \max \{|x|,|y|\}$ for all $x, y \in K$.
5. Suppose $|\cdot|$ is a nonarchimedean valuation on a field K. The topology on K induced by $d(x, y)=|x-y|$ is decidedly odd, as you'll now demonstrate.
(a) Denote the ball about $a \in K$ of radius $r \in \mathbb{R}_{>0}$ by

$$
B_{r}(a)=\{x \in K| | x-a \mid<r\} .
$$

Prove that if $b \in B_{r}(a)$ then $B_{r}(b)=B_{r}(a)$. Deduce that if two balls meet, then the larger radius one contains the smaller.
(b) Prove that (K, d) is totally disconnected, that is every open set is the disjoint union of two nonempty open sets.
(c) Assume (K, d) is a complete metric space, i.e. every Cauchy sequence converges. Prove that for $a_{n} \in K$, the series $\sum a_{n}$ converges if and only if $a_{n} \rightarrow 0 .^{2}$
6. Show that $5 x^{3}-7 x^{2}+3 x+6$ has a root $\alpha \in \mathbb{Z}_{7}$ with $|\alpha-1|_{7}<1$. Find $a \in \mathbb{Z}$ such that $|\alpha-a|_{7} \leq 7^{-4}$.
7. Prove that \mathbb{Q}_{p} contains the $(p-1)^{\text {st }}$ roots of unity. Does it contain any other roots of unity?

[^0]
[^0]: ${ }^{1}$ Revision of April 15, 2009; Changes: Clarified problem 4.
 ${ }^{2}$ If only this were true for $K=\mathbb{R}$, then teaching Calc II would be much easier...

