Math 530: Problem Set 9

Due date: In class on Wednesday, April 22.

Course Web Page: http://dunfield.info/530

- 1. Here's an example where one doesn't have a local-to-global principle. Consider the equation $x^2 + 17y^2 = 257$. Show:
 - (a) The equation has a solution in \mathbb{F}_p for all p.
 - (b) The equation has a solution in \mathbb{Z}_p for all p.
 - (c) Sadly, the equation has *no* solution in \mathbb{Z} .

For (a) and (b), the harder cases are when $p \in \{2,17,257\}$. For part (b) with p = 2, one approach is to use Theorem 7.32 from page 114 of Milne's notes.

- 2. Suppose (V, B) is a quadratic space over a field K with char $(K) \neq 2$, and that B is nondegenerate. Let W be a subspace of V. Show that:
 - (a) $(W^{\perp})^{\perp} = W$
 - (b) $\dim W + \dim W^{\perp} = \dim V$.
 - (c) Show that if (W, B) is nondegenerate, then $V = W \widehat{\oplus} W^{\perp}$, where $\widehat{\oplus}$ denotes *orthogonal* direct sum.
 - (d) Give an example where (c) fails if (W, B) is degenerate. Here (V, B) should still be nondegenerate.
- 3. Let (V, B) be a 2-dimensional quadratic space over K. Prove that V is isotropic if and only if $-\operatorname{disc}(B)$ is a square in K.
- 4. Suppose a real symmetric 4×4 matrix G has characteristic polynomial $x^4 dx^2 + 12$ for some $d \in \mathbb{R}$. Let B be the corresponding bilinear form on \mathbb{R} . Is B non-degenerate? Is it isotropic or anisotropic? What is its canonical form among those listed in class? (These things may depend on d, and note that not all d are possible.)
- 5. Let (V, B) be a nondegenerate quadratic space. Let x and y be anisotropic vectors in V with q(x) = q(y). Show that there is an isometry τ of V such that $\tau(x) = y$.