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Introduction to the Current Events Bulletin 
 
Will the Riemann Hypothesis be proved this week?  What is the  Geometric 
Langlands Conjecture about?  How could you best exploit a stream of data flowing by 
too fast to capture?  I love the idea of having an expert explain such things to me in a 
brief, accessible way.  I think we mathematicians are provoked to ask such questions 
by our sense that underneath the vastness of mathematics is a fundamental unity 
allowing us to look into many different corners -- though we couldn't possibly work in 
all of them.  And I, like most of us, love common-room gossip. 
 
The Current Events Bulletin Session at the Joint Mathematics Meetings, begun in 
2003, is an event where the speakers do not report on their own work, but survey 
some of the most interesting current developments in mathematics, pure and applied.  
The wonderful tradition of the Bourbaki Seminar is an inspiration, but we aim for more 
accessible treatments and a wider range of subjects.  I've been the organizer of these 
sessions since they started, but a broadly constituted advisory committee helps select 
the topics and speakers.  Excellence in exposition is a prime consideration. 
 
A written exposition greatly increases the number of people who can enjoy the 
product of the sessions, so speakers are asked to do the hard work of producing such 
articles.  These are made into a booklet distributed at the meeting.  Speakers are 
then invited to submit papers based on them to the Bulletin of the AMS, and this has 
led to many fine publications. 
 
I hope you'll enjoy the papers produced from these sessions, but there's nothing like 
being at the talks -- don't miss them! 
 

David Eisenbud, Organizer 
University of California, Berkeley 

de@msri.org 
 

 
For PDF files of talks given in prior years, see 

http://www.ams.org/ams/current-events-bulletin.html. 
The list of speakers/titles from prior years may be found at the end of this booklet. 
 





TOPOLOGY, REPRESENTATION THEORY, AND ARITHMETIC:
THREE-MANIFOLDS AND THE LANGLANDS PROGRAM

MATTHEW EMERTON

Abstract. Using ideas from the Langlands program, F. Calegari and N. Dun-
field have constructed a tower of finite covers whose members are closed hy-
perbolic rational homology 3-spheres, and whose injectivity radii grow without
bound. The goal of this note is to sketch some of the ideas of the Langlands
program, and to explain how they can be brought to bear on the study of
hyperbolic 3-manifolds, and in particular, how they are applied in the con-
struction of Calegari and Dunfield.

1. Introduction

Thurston has raised the following question regarding the topology of closed hy-
perbolic 3-manifolds (recall that closed means compact without boundary):

1.1. Question. If M is a closed connected hyperbolic 3-manifold, does M admit a
finite cover whose first Betti number is positive?

To give this question some context, we recall some facts about the fundamental
groups of closed hyperbolic 3-manifolds, as well as some terminology.

First, the facts: If M is a closed connected hyperbolic 3-manifold, then its
fundamental group π1(M) is infinite, but residually finite (i.e. for any element
γ ∈ π1(M) \ 1, there exists a homomorphism π1(M) → G with finite image such
that the image of γ is non-trivial). Thus π1(M) admits many finite quotients, and
correspondingly M admits many finite covers. Indeed, one can say something more
precise: M admits finite covers of arbitrarily large injectivity radius.1

Next, the terminology: A closed connected orientable 3-manifold M is called a
rational homology sphere if its first Betti number equals 0. By Poincaré duality, this
implies that its second Betti number also equals 0, and thus that M has the same
Betti numbers as the 3-sphere S3. (Equivalently, the homology of M , computed
with rational coefficients, coincides with that of S3, whence the name.)

Returning now to Thurston’s question we see that we can reformulate it in the
following (negative) fashion:

1.2. Question. Can one find a closed hyperbolic 3-manifold that is a rational
homology sphere, and all of whose finite covers are again rational homology spheres?

Received by the editors November 17, 2008.
2000 Mathematics Subject Classification. Primary .
The author was supported in part by NSF grant DMS-0701315.
1The injectivity radius of a closed Riemannian manifold N is one-half of the length of the

shortest closed geodesic in N ; thus it can be regarded as (one-half of) a minimal diameter of N .
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2 MATTHEW EMERTON

In fact Thurston conjectured that the answer to his question in this form is no,
or equivalently, that the answer to Question 1.1 is yes. This is the so-called Vir-
tual Positive Betti Number Conjecture (the term virtual refers to the consideration
of finite covers), which remains unproved at the moment. (We refer to [9] for a
discussion of some of the literature and results related to this conjecture.)

Cooper raised the following question, related to Question 1.2 (see Problem 3.58
of [8]):

1.3. Question. Can one find a closed hyperbolic 3-manifold that is a rational
homology sphere, and which admits finite covers of arbitrarily large injectivity
radius that are again rational homology spheres?

Note that a negative answer to this question would yield a negative answer to
Question 1.2 (since, as was recalled above, any closed hyperbolic manifold does
admit covers of arbitrarily large injectivity radius), and hence a positive answer to
Question 1.1, proving the Virtual Positive Betti Number Conjecture.

Unfortunately, the answer to Question 1.3 is in fact yes, and the goal of this
note is to discuss a theorem of Frank Calegari and Nathan Dunfield to this effect
[5, Thm. 1.4]:

1.4. Theorem. There exists an infinite tower of finite covers

· · · → Mn → · · · → M2 → M1 → M0,

each member of which is a closed hyperbolic rational homology sphere, and such
that injectivity radius of Mn grows without bound as n →∞.

In one sense, this result was not a surprise: unlike Question 1.2, Cooper’s Ques-
tion 1.3 was actually expected to have a positive answer. What was surprising was
the method of proof that Calegari and Dunfield gave of their Theorem 1.4: their
proof relies on ideas from the Langlands program and the theory of Galois repre-
sentations, topics that at first glance seem quite far removed from the topology of
3-manifolds.

We should note that Calegari and Dunfield’s proof of Theorem 1.4 is contingent
on certain other conjectures, not related to topology, but rather of an arithmetic
nature. Namely, their proof relies on the Generalized Riemann Hypothesis, as
well as on a particular case of Conjecture 1.7 below. Subsequently, Boston and
Ellenberg [3] found an unconditional proof of Theorem 1.4. However, it is the
original argument of Calegari and Dunfield that will be the focus of these notes,
since it is this argument that exhibits a surprising link between the topology of
3-manifolds and questions of arithmetic.

In the remainder of this introduction, we give the briefest sketch of some of the
ideas in the Langlands program, including a very rough statement of Langlands’
reciprocity conjecture (Conjecture 1.7 below), which plays a key role in Calegari
and Dunfield’s proof of Theorem 1.4, before closing with an outline of the contents
of the main body of this note.

1.5. Langlands’ reciprocity conjecture. The Langlands program is an elabo-
rate web of theorems and conjectures relating the representation theory of and
harmonic analysis on certain Lie groups with arithmetic, and in particular, with
representations of certain Galois groups. I will not try to make a precise statement
of any of its tenets or conjectures here, but will content myself with briefest possible
sketch of the ideas.
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Recall that a complex number α is called an algebraic number if it is algebraic
over Q, i.e. if f(α) = 0 for some polynomial f(X) ∈ Q[X]. The set of all algebraic
numbers forms a subfield Q ⊂ C. Alternatively, one may define Q to be the
algebraic closure of Q in C, or to the the union of all the finite subextensions F of
Q in C. Finite extensions F of Q are usually referred to as number fields. If F is
any number field in C, then Q is also the algebraic closure of F in C, and we may
consider the so-called absolute Galois group Gal(Q/F ) of F ; this is the group of
all automorphisms of Q that restrict to the identity on F . (It is in fact naturally
a profinite group, rather than just a group, but we suppress this detail here.) The
group Gal(Q/F ) is one of the characters in the Langlands story.

The other main characters in the story are automorphic eigenforms on reductive
groups, the definition of which we now very briefly sketch. Suppose that F ⊂ Q is
a number field (i.e. of finite degree over Q). Let G be a semi-simple or reductive
linear algebraic group over F . (One can think of GL(n, F ), although, as we will
see below, there are other important examples too.) Let GR denote the set of real
points of G. (If G = GL(n, F ) where F = Q(α) is the number field obtained by
adjoining the algebraic number α to Q, and if the minimal polynomial of α has r1

real roots and 2r2 complex roots, then GR := GL(n, R)r1 ×GL(n, C)r2 .) Let Γ be a
congruence subgroup of the integer points of G. (See Subsections 4.2, 4.4, and 4.7
below for the definition of this notion in certain special cases; note in particular
that Γ is then a discrete subgroup of GR.)

Consider the space C∞(Γ\GR) of smooth complex valued functions on the quo-
tient Γ\GR. This space is equipped with many commuting operators, namely the
Casimir and higher Casimir operators (these are differential operators, analogous
to a Laplacian, induced by the action of centre of the enveloping algebra of the Lie
algebra of GR on C∞(Γ\GR)), and also the Hecke operators, which are indexed by
(all but a finite number of) the prime ideals of the ring of integers of F .

1.6. Definition. An automorphic eigenform is a function f ∈ C∞(Γ\GR) which is
a simultaneous eigenvector of all of the commuting operators discussed above, i.e.
of all the Casimirs and Hecke operators, and which is slowly increasing at infinity.

We don’t recall the precise definitions of the various operators alluded to above,
or of the term “slowly increasing” as it is used in the above definition, referring the
reader instead to the discussion of [2]. We will outline the definition of the Hecke
operators in certain special cases in Subsection 4.9 below.

If f is an automorphic eigenform, then f determines a collection of eigenvalues,
one eigenvalue for each of the Casimirs and each Hecke operator, which we will
refer to as the system of eigenvalues attached to f .

Of importance for us is the following conjecture, which is a vaguely stated form
of Langlands’ Reciprocity Conjecture:

1.7. Conjecture. (a) If f ∈ C∞(Γ\GR) is an automorphic eigenform, whose (ap-
propriately normalized) eigenvalues under all the Casimir operators are integral,
then the system of eigenvalues attached to f determines, and is in turn determined
by, a certain representation of the Galois group Gal(Q/F ).

(b) Any representation of Gal(Q/F ) satisfying appropriate hypotheses is deter-
mined by an automorphic eigenform in the sense of part (a).

This statement is overly simplified, and there are a myriad of details that we have
omitted. Just to indicate some: (i) f should determine not just one representation,
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but in fact a whole family representations; we refer to subsection 5.1 below for some
examples of such families. (ii) One can be precise about the group of matrices in
which the values of the Galois representations associated to f should lie. In general,
this requires a discussion of dual groups and L-groups (see e.g. [1]). In the case
when G = GL(n, F ), one can say that the associated Galois representations should
be n-dimensional. (iii) There is an explicit description of the manner in which the
system of eigenvalues attached to f , and the corresponding Galois representations,
should determine each other. This description relies on, among other things, the
Satake isomorphism (as explained e.g. in [6]). (iv) We have given no indication of
what the “appropriate hypotheses” on a Galois representation in part (b) of the
conjecture might be. For some examples of Galois representations satisfying these
unspecified hypothesis, we again refer to Subsection 5.1.

To elaborate on all these points, and on the many others that we are omitting,
would turn this brief note into a technical treatise, which is certainly not our goal.
(In the case when G = GL(n, F ) for a number field F , we refer to the article [12] of
Taylor for a rather complete discussion.) Rather, we hope to give some indication as
to how one can use Conjecture 1.7 to deduce concrete statements in mathematics,
such as Theorem 1.4.

Let us close the present discussion by observing that (even in the vague form in
which we have presented it), Conjecture 1.7 relates two kinds of objects, namely
automorphic eigenforms and the Galois groups Gal(Q/F ), which seem to have abso-
lutely nothing to do with one another! The first have to do with spectral theory on
Lie groups, and the second to do with algebraic symmetries of algebraic numbers.
It is the connection it provides between two totally different parts of mathematics
that gives Conjecture 1.7 its force; it is also what makes the proof of even special
cases of the conjecture so difficult. (See Subsection 5.4 below for a discussion of
some of those special cases.)

1.8. An outline of the paper. In Section 2, we recall the basic facts about
hyperbolic manifolds and hyperbolic spaces. In particular, we recall the connection
between n-dimensional hyperbolic space and the Lie group SO(n, 1). In the cases
when n = 2 and 3, we recast this connection in terms of the more familiar groups
PSL(2, R) and PSL(2, C).

In Section 3, we recall the basic facts concerning homology and cohomology of
manifolds. After first considering the case of arbitrary dimension we then specialize
the discussion to the cases of dimensions 2 and 3.

In Section 4, we introduce the notion of congruence quotients of H2 and H3.
In particular, we define a particular tower of congruence quotients of H3 which
satisfies the requirements of Theorem 1.4. (See Theorem 4.8.) Finally, we give
a brief indication of how cohomology classes on congruence quotients give rise to
automorphic forms, and outline the definition of the Hecke operators (in the context
of cohomology).

In Section 5, we discuss the Langlands reciprocity conjecture for 2-dimensional
Galois representations in more detail. We begin by giving some examples of 2-
dimensional Galois representations, namely, those that arise from elliptic curves.
We then describe the reciprocity conjecture for automorphic eigenforms and 2-
dimensional Galois representations associated to Q and to quadratic imaginary
number fields. Next, we very briefly sketch how a special case of the reciprocity
conjecture was used by Andrew Wiles to prove Fermat’s Last Theorem. We then
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explain how the reciprocity conjecture can be used to deduce Theorem 1.4. Finally,
we explain how the reciprocity conjecture implies a positive answer to the virtual
positive Betti number conjecture for arithmetic closed hyperbolic 3-manifolds.

These examples illustrate the different ways in which the reciprocity conjecture
can be applied: in the proof of Fermat’s Last Theorem, one uses the non-existence
of certain kinds of automorphic forms to establish the non-existence of certain
kinds of Galois representations, from which one in turn deduces Fermat’s Last
Theorem. By contrast, in the proof of Theorem 1.4, as we will see, one uses the non-
existence of certain Galois representations to deduce the non-existence of certain
automorphic forms, from which one in turn deduces that certain hyperbolic 3-
manifolds are rational homology spheres. Finally, in the proof of the virtual positive
Betti number conjecture in the arithmetic case, one uses the existence of certain
Galois representations to force the existence of certain automorphic forms.

2. Hyperbolic Manifolds

In this section we discuss some of the basics of the theory of hyperbolic mani-
folds. We begin with a discussion in the general setting of n-dimensional hyperbolic
manifolds, before specializing to the case of surfaces and 3-manifolds. We focus on
explaining the connection with the Lie groups SO(n, 1) (see in particular Subsec-
tion 2.4 below), since this gives the first indication that ideas from the Langlands
program could be applied to the study of hyperbolic manifolds.

2.1. Hyperbolic manifolds as quotients of hyperbolic space. Let M be a
connected complete n-dimensional smooth Riemannian manifold (with n ≥ 2). We
say that M is hyperbolic if M all the sectional curvatures of M are constant and
negative. Rescaling the metric of M if necessary, we may and do assume that the
sectional curvatures of M are then in fact all equal to −1.

The Riemannian metric on M pulls back to a Riemannian metric on the universal
cover M̃ of M , which thus becomes a complete n-dimensional simply connected
hyperbolic manifold. Such a manifold is unique, up to isometry, and we denote it
by Hn. It is referred to as hyperbolic n-space.

The original manifold M may be obtained as the quotient Γ\Hn for a certain
group of deck-transformations Γ acting on Hn. Since the metric on Hn is simply
pulled back from M , the group Γ is a group of isometries of Hn, and it thus a
discrete subgroup of the group Isom(Hn) of all isometries of Hn. If M is furthermore
orientable, then Γ lies in the index 2 subgroup Isom0(Hn) of Isom(Hn) consisting
of orientation-preserving isometries.

2.2. A quadric model of Hn. Hyperbolic n-space admits many models; in this
subsection we describe one of them.

Let Q denote the quadratic form x2
1 + · · ·x2

n − x2
n+1 on Rn+1. This quadratic

forms induces a corresponding pseudo-Riemannian metric

g := dx2
1 + · · · dx2

n − dx2
n+1

on Rn+1. Let X denote the quadric

X := {x ∈ Rn+1 |Q(x) = −1} ⊂ Rn+1,

and let X+ := {x ∈ X |xn+1 > 0} ⊂ X. (The quadric X is the union of two
connected components, of which X+ is one; the other is the subset X− of X
consisting of points for which xn+1 < 0.) If g |X+ denotes the restriction of g to
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X+, then g |X+ is a true Riemannian metric on X+ (i.e. it is positive definite).
Furthermore, the sectional are curvatures of X+ are constant and negative. Since
X+ is simply connected (indeed, it is homeomorphic to Rn), we find that X+

provides a model for Hn.

2.3. A Lie theoretic description of Hn. Let O(n, 1) denote the subgroup of
GL(n+1, R) which preserves the quadratic form Q. The group O(n, 1) then clearly
preserves the quadric X, and one easily sees that it acts transitively on X.

If x is a point of X, and O(n, 1)x denotes the stabilizer of x in O(n, 1), then
O(n, 1)x acts faithfully by orthogonal transformations on the tangent hyperplane
to X at x (orthogonal with respect to the positive definite quadratic form given by
the metric g |X), and in this manner one obtains an isomorphism O(n, 1)x

∼−→ O(n),
where O(n) denotes the usual orthogonal group of n × n matrices that preserve a
positive definite n-dimensional quadratic form. Thus there is an identification

O(n, 1)/ O(n) ∼−→ X.

If we let O(n, 1)+ denote the index 2 subgroup of O(n, 1) consisting of transforma-
tions which take X+ to itself, then we obtain a corresponding identification

(2.1) O(n, 1)+/ O(n) ∼−→ X+ = Hn,

and we also obtain an identification

O(n, 1)+ ∼−→ Isom(X+) = Isom(Hn).

Any matrix in O(n, 1) has determinant equal to ±1. If we let SO(n, 1)+ denote
the subgroup of O(n, 1)+ consisting of matrices of determinant 1, then SO(n, 1)+ is
identified with the index 2 subgroup Isom0(Hn) of orientation preserving isometries
in Isom(Hn). The identification (2.1) induces an identification

SO(n, 1)+/ SO(n) ∼−→ X+ = Hn.

The group SO(n, 1)+ is a connected semi-simple Lie group, and SO(n) is a max-
imal compact subgroup of SO(n, 1)+. In general, the quotient of a connected semi-
simple Lie group G by its maximal compact subgroup is referred to as the symmetric
space associated to G. Thus Hn is the symmetric space associated to SO(n, 1)+.

We can thus summarize the discussion of this section as follows: the group
Isom0(Hn) of orientation-preserving isometries of Hn is isomorphic to the connected
semi-simple Lie group SO(n, 1)+, and Hn may be identified with the symmetric
space associated to SO(n, 1)+.

2.4. Hyperbolic manifolds and discrete subgroups of SO(n, 1)+. If we com-
bine the discussion of subsections 2.1 and 2.3, we find that any orientable complete
hyperbolic n-manifold M may be written as a quotient

M
∼−→ Γ\SO(n, 1)/SO(n),

where Γ is a discrete torsion-free subgroup of SO(n, 1). (The torsion-free condition
ensures that Γ acts properly discontinuously on SO(n, 1)/SO(n) = Hn.)
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2.5. The upper half-space model for Hn. Another model for Hn is the n-
dimensional upper half-space

Hn := {(x1, . . . , xn) ∈ Rn |xn > 0},

equipped with the metric ds2 :=
dx2

1 + . . . dx2
n

x2
n

. One computes that this is a metric

of constant negative curvature, and so does indeed realize Hn as a model of Hn.
We will discuss this model in more detail in the two cases n = 2 and 3.

2.6. The upper half-plane model of H2. The group SO(2, 1)+ is more familiar
than it might seem. Indeed, there is an isomorphism2

PSL(2, R) := SL(2, R)/{±1} ∼−→ SO(2, 1)+.

Thus there is also an isomorphism

(2.2) PSL(2, R) ∼−→ Isom0(H2).

As we now explain, the upper half-plane model of H2 makes this isomorphism
apparent.

Let us rewrite the upper half-plane H2 in the form

H2 := {z = x + iy ∈ C | y > 0}
(i.e. we think of it as being the complex upper half-plane); the metric on H2 then
becomes

ds2 :=
dx2 + dy2

y2
.

The group PSL(2, R) is now seen to act on H2 as follows: an element γ ∈ PSL(2, R),

represented by a matrix
(

a b
c d

)
∈ SL(2, R), acts on H2 via the formula

(2.3) γ · z :=
az + b

cz + d
.

One easily computes that this action preserves the metric ds2, and thus we obtain
a concrete description of the isomorphism (2.2).

2.7. The upper half-space model of H3. The group SO(3, 1)+ is also more
familiar than it might seem. Indeed, there is an isomorphism3

PSL(2, C) := SL(2, C)/{±1} ∼−→ SO(3, 1)+.

2This isomorphism can be understood conceptually as follows: SL(2, R) acts on its Lie algebra
sl2 (the space of 2× 2-matrices of trace zero) via conjugation (the so-called adjoint action). This
action factors through PSL(2, R), and preserves the quadratic form 〈X, Y 〉 := Trace(XY ), which
has signature (2, 1).

3Here is a theoretical description of this isomorphism: let V denote the two-dimensional com-
plex vector space C2 equipped with the standard representation of SL(2, C), and let V denote C2

equipped with the complex conjugate action of SL(2, C). The tensor product W := V ⊗C V is
then a 4-dimensional representation of SL(2, C). The subgroup {±1} acts trivially on W , and so
W is in fact a representation of PSL(2, C). Furthermore, the character of W is real valued, and
in fact W descends to a representation WR of PSL(2, C) on a 4-dimensional real vector space.
One computes that in the space of quadratic forms on WR, there is a unique line that is invariant
under PSL(2, C), and that the non-zero quadratic forms in this line have signature (3, 1) and
(1, 3). Thus PSL(2, C) preserves a quadratic form of signature (3, 1) on WR; this yields the stated
isomorphism.
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This isomorphism then induces an isomorphism

(2.4) PSL(2, R) ∼−→ Isom0(H2).

As we now explain, the upper half-space model of H3 makes this isomorphism
apparent.

Let us rewrite 3-dimensional upper half-space in the form

H3 := {(z, t) ∈ C× R | t > 0}.
We can then identify the Riemann sphere CP 1 := C ∪ {∞} with the “sphere
at infinity” of H3, and the action of Isom0(H3) = Isom0(H3) on H3 induces a
corresponding action by conformal transformations on CP 1. On the the other
hand, from complex analysis we know that the group of conformal transformations
of CP 1 is identified with PSL(2, C), acting by linear fractional transformations (via
the formula (2.3)). Thus we obtain a homomorphism Isom0(H3) → PSL2(C), which
is in fact the inverse of the isomorphism (2.4).

3. The homology and cohomology of closed manifolds

As its title indicates, in this section, we describe some of the basic facts about
the algebraic topology of closed manifolds.

3.1. Homology. If M is a closed connected n-manifold, then we can compute its
homology groups Hi(M,A) with coefficients in any abelian group A via singular
chains. We will primarily be interested in the cases when A is one of the fields Q
or C. In this case the homology groups are actually Q- or C-vector spaces, and the
universal coefficients theorem provides an isomorphism

C⊗Q Hi(M, Q) ∼−→ Hi(M, C);

in particular, the dimension of Hi is independent of whether we use Q and C; it is
referred to as the ith Betti number of M , and denoted bi. It is always finite.

If M is orientable, then Poincaré duality shows that Hi(M, Q) and Hn−i(M, Q)
are naturally dual vector spaces (and similarly with Q replaced by C). In particular
bi = bn−i. Since there is no homology in negative degrees, we see that bi = 0 if
i < 0, and thus also bi = 0 if i > n. Since M is connected, b0 = 1. Thus bn = 1
also.

3.2. Definition. The Euler characteristic of M is defined to be

χ(M) :=
∑

i≥0

(−1)ibi.

Since bi vanishes if i > n, this sum is well-defined.

3.3. Remark. If n is odd and M is orientable, then it follows from Poincaré duality
(or more precisely, the formula bi = bn−i for all i) that χ(M) = 0.

If M is triangulable, i.e. is homeomorphic to a simplicial complex, then we
may also compute homology simplicially, in terms of some given triangulation.
The Euler-Poincaré formula then shows that we may also compute χ(M) as the
alternating sum, for i ≥ 0, of the number of simplices of dimension i appearing in
some given triangulation of M .

We recall that closed surfaces and closed 3-manifolds are always triangulable.
The following lemma describes the behaviour of Euler characteristics under finite

covering maps.
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3.4. Lemma. If N → M is a finite covering map of connected closed manifolds, of
degree d say, then χ(N) = d χ(M).

Sketch of proof. We sketch a proof in the case when M is triangulable. (Since closed
surfaces and closed 3-manifolds are always triangulable, this argument establishes
the lemma in dimensions n = 2 or 3.) Fix a triangulation of M and use this
triangulation to compute χ(M). Then, pull back this triangulation to N via the
covering map and use this pulled-back triangulation to compute χ(N). Since the
covering map has degree d, every simplex in the triangulation of M pulls back to d
simplices in N . The formula follows. !

While the preceding lemma gives excellent control over the behaviour of the
Euler characteristic in finite covers, it is significantly more difficult in general to
control the behaviour of individual Betti numbers, as we will see.

3.5. Cohomology. If M is a closed connected n-manifold, then we can compute its
cohomology group Hi(M,A) with coefficients in any abelian group A via singular
cochains. We will primarily be interested in the cases when A is one of the fields
Q or C. In this case the ith cohomology group is actually a Q- or C-vector space,
and is naturally dual to the ith homology group. In particular, it has the same
dimension, namely the ith Betti number bi.

De Rham theory shows that we may also compute the complex cohomology
spaces Hi(M, C) using differential forms. If we fix a Riemannian metric g on M ,
then we may furthermore use Hodge theory to identify Hi(M, C) with the space of
harmonic i-forms on M . (The connection with analysis provided by de Rham theory
and Hodge theory is one reason for considering cohomology as well as homology,
even though from the point of view of the singular theory, they carry essentially
the same information.)

If N → M is a finite cover, then pulling back cohomology classes induces a
map Hi(M, Q) → Hi(N, Q), which is in fact injective. (Indeed, if the cover is
regular, with covering group G, then we can be more precise: by functoriality of
cohomology, the group G acts on Hi(N, Q), and Hi(M, Q) is identified with the
space of G-invariant elements in Hi(N, Q).) This yields the following lemma:

3.6. Lemma. If N → M is a finite covering map of closed manifolds, then the ith
Betti number of N is greater than or equal to the ith Betti number of M .

Note that this statement is much weaker than the very precise statement re-
garding Euler characteristics provided by Lemma 3.4. In the following subsections,
we will discuss the extent to which we can improve it in the cases of surfaces and
3-manifolds.

3.7. The topology of closed hyperbolic surfaces. If M is a closed connected
orientable surface, then b0 = b2 = 1, while b1 = 2g, where g is the genus of M .
Thus the Euler characteristic χ(M) = 2− 2g.

If M is equipped with a Riemannian metric with curvature K (a real-valued
function on M , since M is a surface), then the Gauss-Bonnet theorem states that

∫

M
K = 2π χ(M).
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In particular, if M is a hyperbolic manifold, so that K ≡ −1, then we find that

χ(M) = −vol(M)
2π

,

and so is negative; equivalently, the genus g > 1. (Conversely, if χ(M) is negative,
then M admits a hyperbolic metric — indeed, a (6g− 6)-dimensional moduli space
of them.)

If N is a finite covering space of M , of degree d say, then Lemma 3.4 shows that
χ(N) = d χ(M). Consequently, if M has genus g, then N has genus d(g − 1) + 1.
In particular, if M is hyperbolic, so that g > 1, then the genus of a degree d cover
of M grows linearly with d (since g > 1), and hence so does the first Betti number.
(Of course, b0 and b2 are both equal to 1 for any connected cover of M .)

3.8. The topology of closed hyperbolic 3-manifolds. If M is a closed con-
nected orientable 3-manifold, then b0 = b3 = 1, while Poincaré duality shows
that b1 = b2. In particular, as was noted in Remark 3.3, the Euler characteris-
tic χ(M) = 0. If N is any finite cover of M , then similarly χ(N) = 0. Thus the
formula of Lemma 3.4, while it is just as valid for for 3-manifolds as for surfaces,
yields no information about the individual Betti numbers of N . Also, Lemma 3.6,
while it shows that Betti numbers of N can’t be less than those of M , does not
imply that they must be greater than those of M .

Thus, unlike in the case of surfaces, it is not obvious that if one considers a tower
of finite covers of M , then the first Betti number must increase as one moves up
the tower. In fact, not only is is not obvious, it is not true! Indeed, Theorem 1.4
establishes the existence of an infinite tower of finite covers every member of which
has b1 = 0 (i.e. is a rational homology sphere).4

To prove Theorem 1.4, we need a tool that allows us to compute individual Betti
numbers, at least for certain hyperbolic 3-manifolds. This tool will be provided by
the Langlands reciprocity conjecture, applied in the context of arithmetic hyperbolic
3-manifolds.

4. Congruence quotients of H2 and H3

In this section we introduce the notion a congruence quotient of H2 or H3. The
notion of a congruence quotient of Hn in fact make sense for any n, but we will
focus on the cases n = 2 and 3, since then we can work with the more familiar
groups PSL(2, R) and PSL(2, C), rather than the groups SO(n, 1) (which are the
groups we would have to deal with to study general values of n).

4.1. First examples of discrete subgroups. If we combine the discussions of
Subsections 2.4, 2.6, and 2.7, we see that in order to find examples of hyperbolic
surfaces or three folds, we have to find examples of discrete torsion-free subgroups
of PSL(2, R) or PSL(3, C).

Some basic models for discrete objects inside continuous ones are provided by
the inclusions Z ⊂ R and Z[i] ⊂ C. (Here Z[i] denotes the ring of Gaussian
integers, consisting of complex numbers whose real and imaginary parts are both

4We should point out that the existence of infinite towers of finite covers all of which are
rational homology spheres was known prior to the work of Calegari and Dunfield in [5]; the
new contribution of their work is to show that the tower can furthermore be chosen so that the
injectivity radius grows without bound.



TOPOLOGY, REPRESENTATION THEORY, AND ARITHMETIC 11

integers.) These immediately suggest examples of discrete subgroups in PSL(2, R)
and PSL(2, C), namely PSL(2, Z) and PSL(2, Z[i]) respectively.

Unfortunately neither of these groups is torsion free, and so each of the quotients
PSL(2, Z)\H2 and PSL(2, Z[i])\H3 is an orbifold rather than a manifold. Also,
neither of these quotients is compact.

4.2. Congruence quotients of H2. Although neither of the two groups PSL(2, Z)
or PSL(2, Z[i]) is torsion-free, it is easy to construct closely related discrete sub-
groups which are torsion-free, the so-called congruence subgroups.

We begin by focusing on the PSL(2, Z) case. In fact it will be simpler to work
with SL(2, Z), and we will do this from now on. Since PSL(2, Z) is a quotient
of SL(2, Z), each of the subgroups we construct will have an associated image in
PSL(2, Z), which will then be a discrete subgroup of PSL(2, R).

If n is any integer, then reduction modulo n induces a ring homomorphism
Z → Z/nZ, and hence a homomorphism of groups

(4.1) SL(2, Z) → SL(2, Z/nZ).

The kernel of this map is denoted Γ(n). It is referred to as the principal congruence
subgroup of level n. It has finite index in SL(2, Z) (since SL(2, Z/nZ) is finite),
and is torsion-free if n ≥ 3 (as its image in PSL(2, R)). Thus we have produced
an infinite family of discrete torsion-free subgroups of PSL(2, R), giving rise to an
infinite family of hyperbolic surfaces. Note that if m divides n, then Γ(m) ⊂ Γ(n)
(with finite index), and so Γ(m)\H2 is a finite cover of Γ(n)\H2. Thus we also have
lots of finite covering maps.

In fact, we will need to consider a slightly different family of congruence sub-
groups, usually denote Γ1(n), and defined as follows:

4.3. Definition. The group Γ1(n) ⊂ SL(2, Z) is defined to be the preimage un-
der (4.1) of the subgroup of upper triangular unipotent matrices in SL(2, Z/nZ);
i.e.

Γ1(n) := {γ ∈ SL(2, Z/nZ) | γ ≡
(

1 ∗
0 1

)
mod N}.

The groups Γ1(n) are torsion-free provided n ≥ 4. Also, if m divides n, then
Γ1(m) is a finite index subgroup of Γ1(n) Thus the quotients Γ1(n)\H2 give an
infinite family of hyperbolic surfaces, with many finite covering maps between them.

In the number-theoretic literature, the group SL(2, Z) is referred to as the mod-
ular group, and the quotients Γ(n)\H2 and Γ1(n)\H2 are called modular curves.
In this note we will refer to them as congruence quotients (for the obvious reason:
that they are quotients of H2 by congruence subgroups of SL(2, Z)).

4.4. Congruence quotients of H3. One can define congruence subgroups of
PSL(2, C) in an analogous manner to the case of PSL(2, R). Before doing so, we
make some preliminary remarks.

The first remark is that the inclusion SL(2, C) ↪→ GL(2, C) induces an isomor-
phism

PSL(2, C) := SL(2, C)/{±1} ∼−→ GL(2, C)/C× =: PGL(2, C).
(Here C×, the multiplicative group of non-zero complex numbers, embeds into
GL(2, C) as the subgroup of non-zero scalar matrices.) Thus, in order to construct
discrete subgroups of PSL(2, C), it suffices to construct such subgroups of GL(2, C);
we can then pass to their images in PGL(2, C) = PSL(2, C). The reason for working
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with GL(2, C) rather than SL(2, C) at this point is dictated by the requirements
of the paper [5] — it will allow us to apply the Langlands reciprocity conjecture
in such a way as to construct a tower of rational homology spheres satisfying the
requirements of Theorem 1.4.

The second remark is that Z[i] is not the only “discrete model” for the complex
numbers that we have available for forming discrete subgroups of GL(2, C). If d
is any positive square-free integer, then F := Q(

√
−d) is a subfield of C with the

property that R⊗Q F
∼−→ C (so F is to C as Q is to R), and the ring of integers5

OF of F is a discrete subring of C. (Such number fields F are called quadratic
imaginary.)

For any choice of F , the group GL(2,OF ) is a discrete subgroup of GL(2, C). If
n is a non-zero ideal in OF , then OF /n is a finite ring, and we have the reduction
map

(4.2) GL(2,OF ) → GL(2,OF /n).

4.5. Definition. We define Γ1(n) to be the subgroup of GL(2,OF ) obtained as
the preimage under (4.2) of the subgroup of upper triangular unipotent matrices in
GL(2,OF /n); i.e.

Γ1(n) := {γ ∈ GL(2,OF /n) | γ ≡
(

1 ∗
0 1

)
mod n}.

Just as in the two-dimensional case, for a fixed choice of F , for all but finitely
many ideal n, the group Γ1(n) will have torsion-free image in PSL(2, C), and of
course, if m ⊂ n is an inclusion of non-zero ideals, then Γ1(m) ⊂ Γ1(n). Thus we
obtain an infinite collection of hyperbolic 3-manifolds, of the form Γ1(n)\H3, with
many finite covering maps between them. Just as in the surface case, we refer to
these hyperbolic 3-manifolds as congruence quotients of H3.

4.6. Noncompactness and unipotent elements. The congruence quotients we
have constructed so far, namely Γ1(n)\H2 and Γ1(n)\H3 , are important examples
of hyperbolic manifolds, but they have the disadvantage, from the point of view
of proving Theorem 1.4, that they are not compact (although they are of finite
volume).

In the surface case, these quotients have ends that look like cylinders on a circle
(i.e. are homeomorphic to S1×R), while in the 3-manifold case they have ends that
look like cylinders on a torus (i.e. are homeomorphic S1 × S1 ×R).

The reason that the quotients Γ1(n)\H2 are not compact is that the groups

Γ1(n) contain non-identity unipotent elements, such as the element
(

1 1
0 1

)
. The

presence of such elements forces the fundamental domains for these groups in H2 to
contain vertical “strips” going off to infinity, which contribute cylindrical ends to
the corresponding quotient surface. A similar phenomenon occurs with the groups
Γ1(n), which also contain unipotent elements.

4.7. Compact congruence quotients of H2 and H3. In this subsection we ex-
plain how to construct other kinds of congruence quotient of H2 and H3 which are

5The ring of integers OF is equal to Z[
√
−d] if d ≡ 1 or 2 mod 4, and Z[(1 +

√
−d)/2] if

d ≡ 3 mod 4.
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closed manifolds. To do this, we need to find discrete subgroups Γ which do not
contain unipotent elements. We now explain how we can do this.

A matrix T in SL(2, R) or SL(2, C) is unipotent if and only if T −1 is a nilpotent
element of the ring of matrices M(2, R) or M(2, C). Thus, in order to be able to
define a notion of congruence subgroup that does not contain non-identity unipotent
elements, we need to find an “integral model” for M(2, R) (say) which does not
contain non-zero nilpotent elements. That is, we need to find a Z-algebra A that
contains no non-zero nilpotents, such that upon extending scalars to R, we obtain
an isomorphism R⊗Z A

∼−→ M(2, R). How can we do this?
The answer to this question is: via the theory of quaternion algebras! To see

why, begin by recalling that Hamilton’s ring of quaternions is the (associative, but
non-commutative) 4-dimensional R-algebra H (this is the traditional notation, but
do not confuse it with a hyperbolic space!) generated by elements i and j with the
commutation relations

i2 = j2 = −1, ij = −ji.

(The elements 1, i, j, and k := ij form a basis for H as an R-vector space.) The
algebra H is a division algebra, and so in particular, contains no non-zero nilpotent
elements, but there is an isomorphism C⊗R H ∼−→ M(2, C).

Now, the theory of quaternion algebras over number fields allows us to greatly
generalize Hamilton’s construction. For example, the associative Q-algebra D gen-
erated by elements i and j with the commutation relations

i2 = 2, j2 = 3, ij = −ji

is a 4-dimensional division algebra over Q, and so in particular contains no non-zero
nilpotents, but there is an isomorphism

(4.3) R⊗Q D
∼−→ M(2, R),

given by

i -→
(√

2 0
0 −

√
−2

)
, j -→

(
0 3
1 0

)
.

Let B denote a maximal order in D; i.e. B is a maximal Z-subalgebra of D
that is finitely generated as a Z-module. (So B is like a “ring of integers” of D,
although, unlike in the case of rings of integers in number fields, B is not unique,
but is only unique up to conjugation by a non-zero element of D.) We can use the
isomorphism (4.3) to regard B as a subring of M(2, R), and then define a discrete
subgroup Γ of SL(2, R) via Γ := B

⋂
SL(2, R). Since D, and hence B, contains

no non-zero nilpotents, the group Γ contains no non-identity unipotent elements.
Thus Γ\H2 is compact.

Now Γ is not torsion-free, and so the quotient Γ\H2 is an orbifold rather than a
manifold. However, by considering the reduction modulo n maps

B → B/nB

for natural numbers n, we may define congruence subgroups of Γ analogous to
Γ(n) or Γ1(n), and so obtain many torsion-free finite index subgroups of Γ. In this
way, we can construct infinitely many closed hyperbolic surfaces, with many finite
covering maps between them. (And this is just for one particular choice of D!)
We refer to these surfaces, obtained by choosing an appropriate Q-algebra D as
above, and then constructing the associated group Γ and its congruence subgroups,
as compact congruence quotients of H2.
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We can similarly construct compact congruence quotients of H3. We first choose
a quadratic imaginary number field F. We then construct a 4-dimensional division
algebra D over F . Since C is algebraically closed, there will automatically be an
isomorphism

(4.4) C⊗F D
∼−→ M(2, C).

We then choose a maximal OF -order B in D, and using (4.4) to regard B as a
subring of M(2, C), we then set Γ := B

⋂
GL(2, C). For any non-zero ideal n ⊂ OF ,

we can use the reduction map B → B/nB to define congruence subgroups of Γ
analogous to Γ1(n). All but finitely many of these congruence subgroups will be
torsion-free, and the corresponding quotients of H3 will then be compact. We
refer to the closed hyperbolic 3-manifolds constructed in this manner as compact
congruence quotients of H3.

We now give a concrete example, which is directly relevant to the proof of The-
orem 1.4. Begin by taking F = Q(

√
−2). Let π := 1 −

√
−2, π := 1 +

√
−2. Note

that π and π are prime elements of OF := Z[
√
−2], and that ππ = 3. Let D be the

associate F -algebra generated by elements i and j satisfying commutation relations

i2 = −1, j2 = −3, ij = −ji.

Then D is a division algebra. We take B to be a maximal order in D, and define Γ
as above. Finally, for any n ≥ 0 we define a congruence subgroup Γn of Γ analogous
to Γ1(πn). (We refer to [5, §2] for the precise definition.) Following [5], we write

X[ππn] := Γn\H3.

(The notation reflects the choice of congruence subgroup, together with the fact
that the construction of D involves the number 3 = ππ.) If n is sufficiently large
than Γn is torsion-free, and thus X[ππn] is a closed hyperbolic 3-manifold.

Calegari and Dunfield prove the following result [5, §2], which has Theorem 1.4
as an immediate consequence.

4.8. Theorem. (1) The injectivity radius of X[ππn] grows without bound as n →∞.
(2) Each X[ππn] is a rational homology sphere.

We will give the barest of sketches of the proof of this theorem in Subsection 5.7
below, which, as we have already emphasized, relies on the Langlands reciprocity
conjecture.

4.9. Automorphic forms, cohomology, and Hecke operators. The reason
that the reciprocity conjecture can be applied to the problem of computing the
Betti numbers of congruence quotients is because there is a relationship between
cohomology of congruence quotients and automorphic forms, which we now sketch.

Suppose that Γ is one of the (many) congruence subgroups of SL(2, R) (resp.
GL(2, C)) that we have defined. If the quotient Γ\H2 (resp. Γ\H3) is a closed man-
ifold, then, as was remarked in Subsection 3.5, we may identify its ith cohomology
group (with C-coefficients) with the space of harmonic differential i-forms on Γ\H2

(resp. Γ\H3). (In fact, suitably interpreted, such a result holds true even when
Γ\H2 (resp. Γ\H3) is not compact.) Now since Γ\H2 := Γ\PSL(2, R)/ SO(2) (resp.
Γ\H3 := Γ\PSL(2, C)/ SO(3)), we may pull-back a harmonic differential i-form on
Γ\H2 (resp. Γ\H3) to obtain a certain kind of differential i-form on Γ\PSL(2, R)
(resp. Γ\PSL(2, C)), which may then be described explicitly in terms of a certain
automorphic form on Γ\PSL(2, R) (resp. Γ\PSL(2, C)). Since this automorphic
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forms arises from a harmonic i-form, it will automatically be an eigenvector for the
Casimir and higher Casimir operators (that were discussed in the introduction).

It will not necessarily be an eigenvector for the Hecke operators. However, we
can define an action of the Hecke operators directly on the cohomology of Γ\H2

(resp. Γ\H3). If we then begin with a cohomology class that is an eigenvector for
the Hecke operators on cohomology, then the corresponding automorphic form will
be an eigenvector for the Hecke operators as well, and so will be an automorphic
eigenform, in the sense of the introduction.

The Hecke operators on cohomology are defined by certain Hecke correspon-
dences.6 We won’t give the general description of these correspondence, but will
content ourselves with describing them in the very simplest case, namely for the
quotient SL(2, Z)\H2.

First, we need to define yet another species of congruence subgroup.

4.10. Definition. For any integer n ≥ 1, the group Γ0(n) ⊂ SL(2, Z) is defined
to be the preimage under (4.1) of the subgroup of upper triangular matrices in
SL(2, Z/nZ); i.e.

Γ0(n) := {γ ∈ SL(2, Z/nZ) | γ ≡
(
∗ ∗
0 ∗

)
mod N}.

Since Γ0(n) ⊂ SL(2, Z/nZ), there is a natural projection pr : Γ0(n)\H2 →
SL(2, Z)\H2.

An easy calculation shows that the matrix
(

0 1
n 0

)
normalizes Γ0(n). Thus the

automorphism of H2 induced by this matrix induces a corresponding automorphism
of Γ0(n)\H2, which we denote by wn.

Now, for any prime p, the pth Hecke correspondence Tp is defined by the following
diagram:

SL(2, Z)\H2 pr←− Γ0(p)\H2 wp−→ Γ0(p)\H2 pr−→ SL(2, Z)\H2,

or, in symbols, Tp := pr ◦wp ◦ pr−1 . (We obtain a correspondence, since pr is not
one-one, and so pr−1 is multi-valued.) The operator induced by Tp on cohomology
is called the pth Hecke operator. The Tp commute among themselves (essentially,
because of the Chinese remainder theorem).

If we replace SL(2, Z) by Γ1(n) (for some n ≥ 1), then we may form an analogous
diagram for any p that does not divide n. Similarly, if Γ\H2 is a compact congruence
quotient, then we may construct an analogous diagram for all but finitely many p.
In this way, we obtain a commuting family of operators on the cohomology of any
such quotient, indexed by all but finitely many primes. One can make similar
constructions after replacing H2 by H3.

As already noted, eigenvectors for the Hecke operators on cohomology of Γ\H2

of Γ\H3 give rise to automorphic eigenforms on Γ\PSL(2, R) or Γ\PSL(2, C).

6A correspondence is a multi-valued continuous map. Cohomology is not only contravariantly
functorial under continuous maps, but under correspondences: heuristically, one pulls back a
cohomology class under each choice of single valued “branch” of the correspondence, and then
sums the results.



16 MATTHEW EMERTON

5. Two-dimensional Galois representations and the Langlands’
reciprocity conjecture for GL2

In this section we begin by explaining how an elliptic curve defined over a number
field gives rise to a family of Galois representations, which encode Diophantine
information related to the curve. These are the basic examples of families of Galois
representations of the type that appear in Conjecture 1.7. We then state a slightly
more precise form of this conjecture in the context of congruence subgroups of
PSL(2, R) or PSL(2, C). Finally, we explain various implications of the conjecture,
including Fermat’s Last Theorem (which is now a theorem of Wiles, since, together
with Taylor, he was able to prove the relevant case of the reciprocity conjecture
in this context), Theorem 1.4 (proved conditionally on the reciprocity conjecture
by Calegari and Dunfield [5], but then unconditionally by Boston and Ellenberg
[3]), and the virtual positive Betti number conjecture in the case of congruence
quotients.

5.1. Elliptic curves. Let F be a number field. An elliptic curve E over F is an
equation of the form y2 = x3 + ax2 + bx + c, with a, b, c ∈ F , for which the cubic
x3 + ax2 + bx + c is separable (i.e. has distinct roots). Our goal in this subsection
is to explain how E gives rise to representations of the Galois group Gal(Q/F ).

We begin by considering the set of complex solutions to E in C2. This set
is a manifold7 that is homeomorphic to a torus with 1 point removed. We can
naturally adjoin this missing point as a “point at infinity” to the set of solutions
of E (equivalently, consider the set of solutions not just in C2, but in the complex
projective plane CP 2). We denote this completed set of solutions by E(C); it is
topologically a torus.

Now a torus is homeomorphic to the quotient R2/Z2, and so admits not just the
structure of a topological space, but the structure of an abelian topological group
(thinking of it as a quotient of the additive topological group R2). We can then
transport this group structure back to E(C), and ask whether is has any intrinsic
meaning.

The answer is yes: the set E(C) does have an intrinsic abelian group structure.
More precisely, the point at infinity is the identity for this group structure, while
three points P,Q,R ∈ E(C) sum to zero in this group structure precisely if they
are collinear. One can check8 that these two rules do indeed define an abelian
group structure on E(C). As we have more-or-less already stated, there is then an
isomorphism of topological groups E(C) ∼−→ R2/Z2.

If n ≥ 1 is a positive integer, then the n-torsion subgroup of R2/Z2 (i.e. the
kernel of multiplication by n) is isomorphic to (Z/nZ)2. Thus, if we write E[n] to
denote the n-torsion subgroup of E(C), there is an isomorphism E[n] ∼−→ (Z/nZ)2.

Now, the points of E[n] are obtained by solving an (increasingly elaborate, as n
gets large) series of equations involving intersecting various lines with the elliptic
curve E. Since the coefficients of the equation giving rise to E lie in F , we see

7It is here that the assumption that x3 + ax2 + bx + c has distinct roots is used.
8This check is non-trivial. One relies very much on the fact that since the points in E(C) are

solutions to a cubic equation in x and y, any line meets E(C) in exactly three points (counted
with the correct multiplicities), by Bézout’s Theorem. With this observation in hand one can
check that the two stated rules give a well-defined commutative binary operation, with inverses.
The verification of associativity remains a non-trivial application of Bézout’s Theorem, together
with some related projective geometry.
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that this series of equations again has coefficients lying in F . Thus the coordinates
of the points of E[n] are algebraic over Q, i.e. E[n] ⊂ E(Q) (the subset of E(C)
consisting of points having algebraic number coordinates), and E[n] is preserved
under the natural action of Gal(Q/F ).

Now comes the punchline: the action of Gal(Q/F ) on E[n] induces a homomor-
phism

ρE,n : Gal(Q/F ) → Aut(E[n]) ∼−→ Aut
(
(Z/nZ)2

)
= GL(2, Z/nZ).

In short, the elliptic curve E gives rise to a family of two-dimensional represen-
tations ρE,n of the Galois group Gal(Q/F ), with coefficients in the various rings
Z/nZ.

5.2. The Diophantine significance of ρE,n. As in the preceding section, let
E denote an elliptic curve over the number field F , given by the equation y2 =
x3 + ax2 + bx + c. Let OF denote the ring of integers of F . Suppose that p is a
non-zero prime ideal of OF satisfying the following two properties: (a) p does not
contain the denominators of any of a, b, or c; (b) p does not divide the discriminant
of x3 + ax2 + bx + c. Then, by virtue of (a), we may reduce a, b, and c modulo p,
to obtain elements a, b, and c in the field F := OF /p. By virtue of (b), the cubic
x3 +ax2 + bx+ c has distinct roots in F[x], and so y2 = x3 +ax2 + bx+ c defines an
elliptic curve E over F. Let E(F) denote the set of solutions in F to the equation
defining E (including the one point at infinity), and write9

ap := 1 + |F| − |E(F)|.

(Here we have written |X| to denote the order of the finite set X.)
The quantities ap are of interest from a Diophantine point of view; they de-

scribe the number of the solutions to the various congruences E induced by the
equation E. The following proposition shows that they may be recovered from
the family of Galois representations ρE,n attached to E. We first recall that alge-
braic number theory associates to each non-zero prime ideal a canonical element10
Frobp ∈ Gal(Q/F ).

5.3. Proposition. For each prime p, the trace of ρE,n(Frobp) is congruence to ap

mod n.

The Cebotarev density theorem shows that the elements Frobp are dense in the
group Gal(Q/F ). Thus, knowing all the quantities ap is equivalent to knowing the
characters of all the representations ρE,n. This in turn is essentially11 equivalent

9The number of points on a projective line over F is equal to |F| + 1 (there are the elements
of F together with the point at infinity). The quantity ap may thus be regarded as measuring
the extent to which number of points on the elliptic curve E over F deviates from the number of
points on the projective line.

10In fact, Frobp is not an element, but a conjugacy class of cosets. Precisely, if Dp ⊂ Gal(Q/F )
is choice of decomposition group at p — and such a choice is well-defined up to conjugation — then
Frobp is a canonically determined element of the quotient Dp/Ip , where Ip denotes the inertia
subgroup of Dp . In what follows, it will not cause any harm to speak as if Frobp is in fact a
well-determined element of Gal(Q/F ).

11Since ρE,n is defined over the ring Z/nZ, which is not a field in general, it is not the case in
general that ρE,n is determined by its character. But this is a technical detail, which can safely
be ignored for the sake of the present discussion.
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to knowing all the Galois representations ρE,n. Thus the family of Galois repre-
sentations ρE,n is an algebraic package that encodes the collection of interesting
Diophantine data ap.

5.4. Reciprocity. We are now in a position to state a slightly more precise form of
Conjecture 1.7. We let F denote either Q or Q(

√
−d) for some square-free d > 0. In

the first case, let Γ either be a congruence subgroup of SL(2, Z), or else a congruence
subgroup associated to a 4-dimensional division algebra over Q as in Subsection 4.7.
In the second case, let Γ either be a congruence subgroup of GL(2,OF ), or else a
congruence subgroup associated to a 4-dimensional division algebra over F as in
Subsection 4.7.

In the first case, we consider automorphic eigenforms on Γ\PSL(2, R). In the
second case, we consider automorphic eigenforms on Γ\PSL(2, C). In either case,
there is a Hecke operator associated to all but finitely many non-zero prime ideals12
p in OF , and so if f is an automorphic Hecke eigenform, it has an associated Hecke
eigenvalue ap for all but finitely many p.

5.5. Conjecture. (a) If f is an automorphic Hecke eigenform, whose (suitably
normalized) eigenvalue under the Casimir is integral, then the eigenvalues ap are
algebraic integers, lying in the ring of integers OL of some number field L, and
for every non-zero ideal n ⊂ OL, there is a representation ρf,n : Gal(Q/F ) →
GL(2,OL/n) with the property that ap is congruent mod n to the trace of ρf,n(Frobp)
for all but finitely many non-zero prime ideals p ⊂ OF .

(b) Suppose given a number field L, and a family of Galois representations ρn :
Gal(Q/F ) → GL(2,OL/n), such that the traces of ρf,n(Frobp) are compatible (in an
obvious sense) as n varies, for all but finitely many non-zero prime ideals p ⊂ OF ,
and satisfying some other technical conditions which we suppress. Then there exists
an automorphic Hecke eigenform f as in (a) such that ρn = ρf,n for all n.

If E is an elliptic curve over F , then we can take L = Q, and the family of
representations ρE,n is one to which part (b) of the conjecture should apply. Thus
every elliptic curve is conjectured to be associated to an automorphic eigenform, in
the sense of the conjecture. Taking into account Proposition 5.3, we see that the
Hecke eigenvalues of the eigenform encode the number of points on E modulo the
various prime ideal p.

5.6. Fermat’s Last Theorem. In the papers [13, 14], Taylor and Wiles proved
part (b) of the reciprocity conjecture for the Galois representations arising from
(most13) elliptic curves over the field Q of rational numbers. The conjecture in
this case (which predates Langlands’ more general conjecture, and was known as
the Shimura-Taniyama, or Shimura-Taniyama-Weil, conjecture) famously implies
Fermat’s Last Theorem. Let us very briefly sketch the reason why (following the
strategy due to Frey and Serre).

Fermat’s Last Theorem for the exponent 3 was proved by Euler, and for the
exponent 4 by Fermat himself. Suppose then that up + vp = wp for some prime

12In fact, this is correct only if OF has class number 1; otherwise, the situation is slightly more
complicated. We suppress this technical detail.

13More precisely, they proved the conjecture for those Galois representations arising from so-
called semi-stable elliptic curves over Q. The conjecture for Galois representations arising from
arbitrary elliptic curves was completely established in [4].
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p ≥ 5 and some integers u, v, and w. We can form the elliptic curve E with equation

y2 = x(x− up)(x + vp).

This elliptic curve gives rise to its Galois representations ρE,n, and hence, via the
reciprocity conjecture, to an automorphic eigenform f . This automorphic eigen-
form will in turn contribute to the H1 of some compact congruence quotient of H2.
Moreover, a careful investigation of the properties of the Galois representations
ρE,n, and in particular of the representation ρE,p, due to Ribet [10], allows one
to compute this congruence quotient precisely.14 A direct computation then shows
that this particular congruence quotient has genus 0, and hence that H1 = 0. Con-
sequently, the eigenform can’t exist, and thus neither can the solution to Fermat’s
Last Theorem.

5.7. Rational homology spheres. To prove Theorem 4.8, Calegari and Dunfield
show that the reciprocity conjecture implies that each of the manifolds X[ππn] has
trivial first Betti number. The proof is by contradiction: Suppose that some X[ππn]
has positive first Betti number. Then there is a non-zero eigenvector for the Hecke
operators in H1(X[ππn], C), whose harmonic representative will be an automorphic
eigenform. Part (a) of the reciprocity conjecture implies that this eigenform gives
rise to a family of Galois representations. Analyzing the properties of the resulting
Galois representations, one finds that in fact they cannot exist!15 Thus b1 must
vanish after all.

We won’t attempt to explain here the Galois-theoretic argument that rules out
the existence of these representations. We mention only that it relies on the fact
that F := Q(

√
−2) has fairly small discriminant (−8), and that ππ = 3, which is a

small prime.
Although great progress has been made on part (a) of the reciprocity conjecture

in the case when F is quadratic imaginary (by Taylor, et. al. [7, 11]), it is not known
in sufficient generality to make the argument of [5] unconditional. (Another, uncon-
ditional, proof of Theorem 1.4 has been found by Boston and Ellenberg.) Never the
less, the reciprocity conjecture is certainly believed to be true, and the argument of
Calegari and Dunfield gives a good indication of the range of its influence in diverse
areas of mathematics.

5.8. The virtual positive Betti number conjecture for congruence quo-
tients of H3. We close this note by observing that the reciprocity conjecture im-
plies the virtual positive Betti number conjecture for compact congruence quotients

14One can reasonably ask where the property that (u, v, w) solves the Fermat equation is
actually used. The answer is as follows: the discriminant of the cubic x(x− up)(x + vp) is equal
to −upvp(up + wp) = (−uvw)p, and in particular is a perfect pth power. Because of this, the
representation ρE,p is endowed with rather remarkable properties — too remarkable, as it turns
out, for it to even exist.

This is not the place to explain carefully how the nature of the discriminant influences the
properties of the representation ρE,p. But it may help to mention a simpler, but related, Galois-
theoretic phenomenon: if f(x) ∈ Q[x] is an irreducible degree n polynomial, then the Galois group
of the splitting field of f(x) is a subgroup of the symmetric group Sn, and is typically equal to
this group. However, if the discriminant of f(x) is a square, then the Galois group in fact lies
inside the alternating group An.

15In the non-existence proof as it is written in [5], the Generalized Riemann Hypothesis is also
required. However, Calegari has informed me that in fact the argument can be made to work
without it.
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of H3. Fix F = Q(
√
−d), and a 4-dimensional division algebra D over F , as in

Subsection 4.7. If Γ1 and Γ2 are two congruence subgroups of GL(2, C) arising
from these choices, then Γ1

⋂
Γ2 has finite index in each of Γ1 and Γ2, and so

(Γ1
⋂

Γ2)\H3 is a common finite cover of each of Γ1\H3 and Γ2\H3. Taking into
account Lemma 3.6, it thus suffices to exhibit one Γ (arising from the particular
choice of F and D) for which Γ\H3 has positive first Betti number. For this, it suf-
fices to exhibit a certain kind of non-zero automorphic eigenform. If one grants the
reciprocity conjecture (in particular, part (b) of the conjecture), then to do this, it
suffices in turn to write down certain kinds of Galois representations. Now one can
write down lots of elliptic curves over the quadratic imaginary field F , so many in
fact that one can find plenty of the required kinds of Galois representations. This
proves the result.
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