Section 16.5

22. $\operatorname{div} \mathbf{F}=\frac{\partial(f(y, z))}{\partial x}+\frac{\partial(g(x, z))}{\partial y}+\frac{\partial(h(x, y))}{\partial z}=0$ so \mathbf{F} is incompressible.

For Exercises 23-29, let $\mathbf{F}(x, y, z)=P_{1} \mathbf{i}+Q_{1} \mathbf{j}+R_{1} \mathbf{k}$ and $\mathbf{G}(x, y, z)=P_{2} \mathbf{i}+Q_{2} \mathbf{j}+R_{2} \mathbf{k}$.
60. (a) Here $z=a \sin \alpha, y=|A B|$, and $x=|O A|$. But $|O B|=|O C|+|C B|=b+a \cos \alpha$ and $\sin \theta=\frac{|A B|}{|O B|}$ so that $y=|O B| \sin \theta=(b+a \cos \alpha) \sin \theta$. Similarly $\cos \theta=\frac{|O A|}{|O B|}$ so $x=(b+a \cos \alpha) \cos \theta$. Hence a parametric representation for the torus is $x=b \cos \theta+a \cos \alpha \cos \theta, y=b \sin \theta+a \cos \alpha \sin \theta$,
 $z=a \sin \alpha$, where $0 \leq \alpha \leq 2 \pi, 0 \leq \theta \leq 2 \pi$.
(b)

$a=1, b=8$

$a=3, b=8$

$$
a=3, b=4
$$

(c) $x=b \cos \theta+a \cos \alpha \cos \theta, y=b \sin \theta+a \cos \alpha \sin \theta, z=a \sin \alpha$, so $\mathbf{r}_{\alpha}=\langle-a \sin \alpha \cos \theta,-a \sin \alpha \sin \theta, a \cos \alpha\rangle$, $\mathbf{r}_{\theta}=\langle-(b+a \cos \alpha) \sin \theta,(b+a \cos \alpha) \cos \theta, 0\rangle$ and
$\mathbf{r}_{\alpha} \times \mathbf{r}_{\theta}=\left(-a b \cos \alpha \cos \theta-a^{2} \cos \alpha \cos ^{2} \theta\right) \mathbf{i}+\left(-a b \sin \alpha \cos \theta-a^{2} \sin \alpha \cos ^{2} \theta\right) \mathbf{j}$

$$
+\left(-a b \cos ^{2} \alpha \sin \theta-a^{2} \cos ^{2} \alpha \sin \theta \cos \theta-a b \sin ^{2} \alpha \sin \theta-a^{2} \sin ^{2} \alpha \sin \theta \cos \theta\right) \mathbf{k}
$$

$$
=-a(b+a \cos \alpha)[(\cos \theta \cos \alpha) \mathbf{i}+(\sin \theta \cos \alpha) \mathbf{j}+(\sin \alpha) \mathbf{k}]
$$

Then $\left|\mathbf{r}_{\alpha} \times \mathbf{r}_{\theta}\right|=a(b+a \cos \alpha) \sqrt{\cos ^{2} \theta \cos ^{2} \alpha+\sin ^{2} \theta \cos ^{2} \alpha+\sin ^{2} \alpha}=a(b+a \cos \alpha)$.
Note: $b>a,-1 \leq \cos \alpha \leq 1$ so $|b+a \cos \alpha|=b+a \cos \alpha$. Hence
$A(S)=\int_{0}^{2 \pi} \int_{0}^{2 \pi} a(b+a \cos \alpha) d \alpha d \theta=2 \pi\left[a b \alpha+a^{2} \sin \alpha\right]_{0}^{2 \pi}=4 \pi^{2} a b$.
47. Let S be a sphere of radius a centered at the origin. Then $|\mathbf{r}|=a$ and $\mathbf{F}(\mathbf{r})=c \mathbf{r} /|\mathbf{r}|^{3}=\left(c / a^{3}\right)(x \mathbf{i}+y \mathbf{j}+z \mathbf{k})$. A parametric representation for S is $\mathbf{r}(\phi, \theta)=a \sin \phi \cos \theta \mathbf{i}+a \sin \phi \sin \theta \mathbf{j}+a \cos \phi \mathbf{k}, 0 \leq \phi \leq \pi, 0 \leq \theta \leq 2 \pi$. Then $\mathbf{r}_{\phi}=a \cos \phi \cos \theta \mathbf{i}+a \cos \phi \sin \theta \mathbf{j}-a \sin \phi \mathbf{k}, \mathbf{r} \theta=-a \sin \phi \sin \theta \mathbf{i}+a \sin \phi \cos \theta \mathbf{j}$, and the outward orientation is given by $\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=a^{2} \sin ^{2} \phi \cos \theta \mathbf{i}+a^{2} \sin ^{2} \phi \sin \theta \mathbf{j}+a^{2} \sin \phi \cos \phi \mathbf{k}$. The flux of \mathbf{F} across S is

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot d \mathbf{S}= & \int_{0}^{\pi} \int_{0}^{2 \pi} \frac{c}{a^{3}}(a \sin \phi \cos \theta \mathbf{i}+a \sin \phi \sin \theta \mathbf{j}+a \cos \phi \mathbf{k}) \\
& \cdot\left(a^{2} \sin ^{2} \phi \cos \theta \mathbf{i}+a^{2} \sin ^{2} \phi \sin \theta \mathbf{j}+a^{2} \sin \phi \cos \phi \mathbf{k}\right) d \theta d \phi \\
= & \frac{c}{a^{3}} \int_{0}^{\pi} \int_{0}^{2 \pi} a^{3}\left(\sin ^{3} \phi+\sin \phi \cos ^{2} \phi\right) d \theta d \phi=c \int_{0}^{\pi} \int_{0}^{2 \pi} \sin \phi d \theta d \phi=4 \pi c
\end{aligned}
$$

Thus the flux does not depend on the radius a.
Section 16.8

1. Both H and P are oriented piecewise-smooth surfaces that are bounded by the simple, closed, smooth curve $x^{2}+y^{2}=4$, $z=0$ (which we can take to be oriented positively for both surfaces). Then H and P satisfy the hypotheses of Stokes' Theorem, so by (3) we know $\iint_{H} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{P} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}$ (where C is the boundary curve).
2. The boundary curve C is the circle $x^{2}+y^{2}=1, z=1$ oriented in the counterclockwise direction as viewed from above.

We can parametrize C by $\mathbf{r}(t)=\cos t \mathbf{i}+\sin t \mathbf{j}+\mathbf{k}, 0 \leq t \leq 2 \pi$, and then $\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}+\cos t \mathbf{j}$. Thus $\mathbf{F}(\mathbf{r}(t))=\sin ^{2} t \mathbf{i}+\cos t \mathbf{j}+\mathbf{k}, \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=\cos ^{2} t-\sin ^{3} t$, and

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot d \mathbf{r} & =\int_{0}^{2 \pi}\left(\cos ^{2} t-\sin ^{3} t\right) d t=\int_{0}^{2 \pi} \frac{1}{2}(1+\cos 2 t) d t-\int_{0}^{2 \pi}\left(1-\cos ^{2} t\right) \sin t d t \\
& =\frac{1}{2}\left[t+\frac{1}{2} \sin 2 t\right]_{0}^{2 \pi}-\left[-\cos t+\frac{1}{3} \cos ^{3} t\right]_{0}^{2 \pi}=\pi
\end{aligned}
$$

Now curl $\mathbf{F}=(1-2 y) \mathbf{k}$, and the projection D of S on the $x y$-plane is the disk $x^{2}+y^{2} \leq 1$, so by Equation 17.7.10
[ET 16.7.10] with $z=g(x, y)=x^{2}+y^{2}$ we have
$\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{D}(1-2 y) d A=\int_{0}^{2 \pi} \int_{0}^{1}(1-2 r \sin \theta) r d r d \theta=\int_{0}^{2 \pi}\left(\frac{1}{2}-\frac{2}{3} \sin \theta\right) d \theta=\pi$.
15. The boundary curve C is the circle $x^{2}+z^{2}=1, y=0$ oriented in the counterclockwise direction as viewed from the positive y-axis. Then C can be described by $\mathbf{r}(t)=\cos t \mathbf{i}-\sin t \mathbf{k}, 0 \leq t \leq 2 \pi$, and $\mathbf{r}^{\prime}(t)=-\sin t \mathbf{i}-\cos t \mathbf{k}$. Thus $\mathbf{F}(\mathbf{r}(t))=-\sin t \mathbf{j}+\cos t \mathbf{k}, \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t)=-\cos ^{2} t$, and $\left.\oint_{C} \mathbf{F} \cdot d \mathbf{r}=\int_{0}^{2 \pi}-\cos ^{2} t d t=-\frac{1}{2} t-\frac{1}{4} \sin 2 t\right]_{0}^{2 \pi}=-\pi$.
Now curl $\mathbf{F}=-\mathbf{i}-\mathbf{j}-\mathbf{k}$, and S can be parametrized (see Example 17.6.10 [ET 16.6.10]) by
$\mathbf{r}(\phi, \theta)=\sin \phi \cos \theta \mathbf{i}+\sin \phi \sin \theta \mathbf{j}+\cos \phi \mathbf{k}, 0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi$. Then
$\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}=\sin ^{2} \phi \cos \theta \mathbf{i}+\sin ^{2} \phi \sin \theta \mathbf{j}+\sin \phi \cos \phi \mathbf{k}$ and

$$
\begin{aligned}
\iint_{\mathcal{S}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S} & =\iint_{x^{2}+z^{2} \leq 1} \operatorname{curl} \mathbf{F} \cdot\left(\mathbf{r}_{\phi} \times \mathbf{r}_{\theta}\right) d A=\int_{0}^{\pi} \int_{0}^{\pi}\left(-\sin ^{2} \phi \cos \theta-\sin ^{2} \phi \sin \theta-\sin \phi \cos \phi\right) d \theta d \phi \\
& =\int_{0}^{\pi}\left(-2 \sin ^{2} \phi-\pi \sin \phi \cos \phi\right) d \phi=\left[\frac{1}{2} \sin 2 \phi-\phi-\frac{\pi}{2} \sin ^{2} \phi\right]_{0}^{\pi}=-\pi
\end{aligned}
$$

Page 3

16. Let S be the surface in the plane $x+y+z=1$ with upward orientation enclosed by C. Then an upward unit normal vector for S is $\mathbf{n}=\frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k})$. Orient C in the counterclockwise direction, as viewed from above. $\int_{C} z d x-2 x d y+3 y d z$ is equivalent to $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ for $\mathbf{F}(x, y, z)=z \mathbf{i}-2 x \mathbf{j}+3 y \mathbf{k}$, and the components of \mathbf{F} are polynomials, which have continuous partial derivatives throughout \mathbb{R}^{3}. We have curl $\mathbf{F}=3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}$, so by Stokes' Theorem,

$$
\begin{aligned}
\int_{C} z d x-2 x d y+3 y d z & =\int_{C} \mathbf{F} \cdot d \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S}(3 \mathbf{i}+\mathbf{j}-2 \mathbf{k}) \cdot \frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}+\mathbf{k}) d S \\
& =\frac{2}{\sqrt{3}} \iint_{S} d S=\frac{2}{\sqrt{3}}(\text { surface area of } S)
\end{aligned}
$$

Thus the value of $\int_{C} z d x-2 x d y+3 y d z$ is always $\frac{2}{\sqrt{3}}$ times the area of the region enclosed by C, regardless of its shape or location. [Notice that because \mathbf{n} is normal to a plane, it is constant. But curl \mathbf{F} is also constant, so the dot product $\operatorname{curl} \mathbf{F} \cdot \mathbf{n}$ is constant and we could have simply argued that $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} d S$ is a constant multple of $\iint_{S} d S$, the surface area of S.]
19. Assume S is centered at the origin with radius a and let H_{1} and H_{2} be the upper and lower hemispheres, respectively, of S. Then $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\iint_{H_{1}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}+\iint_{H_{2}} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}+\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}$ by Stokes' Theorem. But C_{1} is the circle $x^{2}+y^{2}=a^{2}$ oriented in the counterclockwise direction while C_{2} is the same circle oriented in the clockwise direction. Hence $\oint_{C_{2}} \mathbf{F} \cdot d \mathbf{r}=-\oint_{C_{1}} \mathbf{F} \cdot d \mathbf{r}$ so $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d \mathbf{S}=0$ as desired.

Section 16.9

23. Since $\frac{\mathbf{x}}{|\mathbf{x}|^{3}}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}$ and $\frac{\partial}{\partial x}\left(\frac{x}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)=\frac{\left(x^{2}+y^{2}+z^{2}\right)-3 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}$ with similar expressions for $\frac{\partial}{\partial y}\left(\frac{y}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)$ and $\frac{\partial}{\partial z}\left(\frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}\right)$, we have $\operatorname{div}\left(\frac{\mathbf{x}}{|\mathbf{x}|^{3}}\right)=\frac{3\left(x^{2}+y^{2}+z^{2}\right)-3\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{5 / 2}}=0$, except at $(0,0,0)$ where it is undefined.
24. We first need to find \mathbf{F} so that $\iint_{S} \mathbf{F} \cdot \mathbf{n} d S=\iint_{S}\left(2 x+2 y+z^{2}\right) d S$, so $\mathbf{F} \cdot \mathbf{n}=2 x+2 y+z^{2}$. But for S, $\mathbf{n}=\frac{x \mathbf{i}+y \mathbf{j}+z \mathbf{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$. Thus $\mathbf{F}=2 \mathbf{i}+2 \mathbf{j}+z \mathbf{k}$ and $\operatorname{div} \mathbf{F}=1$.
If $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$, then $\iint_{S}\left(2 x+2 y+z^{2}\right) d S=\iiint_{B} d V=V(B)=\frac{4}{3} \pi(1)^{3}=\frac{4}{3} \pi$.
