

(a) Compute the vectors $\mathbf{v} = \overrightarrow{AB}$ and $\mathbf{w} = \overrightarrow{AC}$. (2 points)

$$\vec{\nabla} = (1,0,3) - (0,0,2) = (1,0,1)$$

 $\vec{\nabla} = (0,1,3) - (0,0,2) = (0,1,1)$

(b) Find a normal vector \mathbf{n} to the plane P containing the points A, B, C. (3 points)

$$\vec{n} = \vec{v} \times \vec{w} = \begin{vmatrix} \vec{t} & \vec{J} & \vec{k} \\ 0 & 1 \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ 1 & 1 \end{vmatrix} \vec{t} - \begin{vmatrix} 0 & 1 \\ 0 & 1 \end{vmatrix} \vec{k}$$

$$= (-1, -1, 1)$$

(c) Find the area of the triangle spanned by *A*, *B*, *C*. (2 points)

Area
$$\triangle = \frac{1}{2} \text{ Area} \left(\sqrt[3]{2} \sqrt[3]{+ \sqrt[3]{2}} \right) = \frac{1}{2} \left| \sqrt[3]{2} \sqrt[3]{+ \sqrt[3]{2}} \right| = \frac{1}{2} \left| \left(-1, -1, 1 \right) \right| = \frac{1}{2} \sqrt{(-1)^2 + (-1)^2 + 1^2} = \sqrt[3]{2}$$

(d) Find an equation which describes P. If you can't do (b), take $\mathbf{n} = (1, -2, -1)$. (1 point)

$$\vec{n} = (-1, -1)$$
 Point = A = (0,0,2)

Egn:

$$-1(x-0)-1(y-0)+1(z-2)=0 \iff -x-y+z=2$$

(e) Consider the line *L* given by the parameterization $\mathbf{r}(t) = (2 + 2t, 3, -1 + 2t)$. Is *L* parallel to the plane *P*? Why or why not? (2 points)

Have
$$r(t) = (2,3,-1) + t(2,0,2)$$
,

 $\vec{n} \cdot \vec{u} = (-1, -1, 1) \cdot (2, 0, 2)$

2. Match the following functions with their graphs and level set diagrams. Here each level set diagram consists of level sets $\{f(\mathbf{x}) = c_i\}$ drawn for evenly spaced c_i . (9 **point**)

3. Consider the function
$$f(x, y) = \frac{y^2}{x^2 + y^2}$$
 for $(x, y) \neq (0, 0)$. Compute the following limit, if it exists. **(5 points)**

Along the x-axis,
$$f(x,y) = \frac{0^2}{\chi^2 + 0^2} = 0$$

and along the y-axis we have
 $f(0,y) = \frac{y^2}{0^2 + y^2} = 1$. Thus fapproaches
different values depending on how we
approach $(0,0)$. So the limit D. N. E.

4. Consider the composition of the function $f: \mathbb{R}^2 \to \mathbb{R}$ with $x, y: \mathbb{R}^2 \to \mathbb{R}$, that is

$$h(s,t) = f(x(s,t), y(s,t))$$

Compute $\frac{\partial h}{\partial s}(1,2)$ using the chain rule and the table of values below. (5 points)

$$\frac{\partial h}{\partial s} = \frac{\partial f}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial f}{\partial y} \cdot \frac{\partial y}{\partial s}$$

input	X	У	f	$\frac{\partial x}{\partial s}$	$\frac{\partial y}{\partial s}$	$\frac{\partial f}{\partial x}$	$\frac{\partial f}{\partial y}$
(0,1)	1	1	4	1	2	7	(3)
(1,1)	1	2	6	1	1	6	2
(1,2)	0	(1)	5	2	3	5	1
(2,3)	2	3	4	0	1	4	1

Thus
$$\frac{\partial h}{\partial s}(1,2) = \frac{\partial f}{\partial x}(x(1,2),y(1,2)) \cdot \frac{\partial x}{\partial s}(1,2) + .$$

$$\frac{\partial f}{\partial y}(x(1,2),y(1,2)) \cdot \frac{\partial f}{\partial s}(1,2) + .$$

$$= 7 \cdot 2 + 3 \cdot 3 = \boxed{23}$$

- 5. Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ given by $f(x, y) = x^2 + \frac{x}{y}$.
 - (a) Compute the partial derivatives f_x , f_y and f_{xy} . (3 points)

$$f_{x} = 2x + \frac{1}{y}$$
 $f_{y} = 0 - \frac{x}{y^{2}} = \frac{-x}{y^{2}}$
 $f_{xy} = \frac{2}{3x} f_{y} = \frac{2}{3x} (-\frac{x}{y^{2}}) = -\frac{1}{y^{2}}$

(b) Is f differentiable at (2,1)? Why or why not? (2 points)

Yes, because both partial derivatives
$$f_{\chi} = 2x + f_{\chi} \text{ and } f_{\chi} = -\frac{\chi^2}{2} \text{ exist and are}$$

$$\frac{\text{Continuous near (1,2).}}{\text{(c) Give the linear approximation of } f_{\chi} \text{ at the point (2,1): (2 points)}$$

$$f(2+\Delta x,1+\Delta y) \approx f(2,1) + f_{\chi}(2,1) \Delta x + f_{y}(2,1) \Delta y$$

= 6 + 5 \Delta x - 2 \Delta y

(d) Give the equation of the tangent plane to the graph of f at (2, 1, 6). (2 points)

As
$$f(x,y) \approx 6 + 5(x-2) - 2(y-1)$$

by (c), tangent plane is -
 $Z = 6 + 5(x-2) - 2(y-1) = -2 + 5x - 2y$

6. The picture below shows some level sets of a function $f: \mathbb{R}^2 \to \mathbb{R}$.

(a) At the point **p** shown, determine the sign of each of the below quantities. (1 points each)

0

- $f(\mathbf{p})$: positive negative 0 $f_x(\mathbf{p})$: positive negative 0 $f_{xx}(\mathbf{p})$: positive negative $f_{\nu}(\mathbf{p})$: positive negative $D_{\mathbf{v}}f(\mathbf{p})$: positive negative 0
- (b) Draw $\nabla f(\mathbf{p})$ on the picture (1 points).

Extra credit problem: Let $E: \mathbb{R}^2 \to \mathbb{R}$ be given by $E(x,y) = 3x^2 + xy$. Find a $\delta > 0$ so that $|E(\mathbf{h})| < 0.01$ for all $\mathbf{h} = (x, y)$ with $|\mathbf{h}| < \delta$. Carefully justify why the δ you provide is good enough. (3 points)

Take
$$\delta = \frac{1}{100}$$
. If $|\vec{h}| < \delta$, then $|x| < \delta$ and $|y| < \delta$ as well. Then $|\vec{E}(\vec{h})| = |3x^2 + xy|$

$$\leq |3x^2| + |xy| = 3|x| + |x||$$
 My prizentse is $< 3\delta^2 + \delta \cdot \delta = 4\delta^2 = \frac{4}{10000} < \frac{1}{10}$ My prizentse is as requested!