1. Consider the points A = (0,0,2), B = (1,0,3),and C = (0,1, 3) in R3. /;\/
WA
(a) Compute the vectors v = AB and w = AC. (2 points)
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(b) Find a normal vector n to the plane P containing the points A, B, C. (3 points)
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(2 points)

(¢) Find the area of the triangle spanned by A, B, C.

. — N
— L g oW ;
Zﬂ_ i :
; - —
3 =

(d) Find an equation which describes P. If you can't do (b), taken = (1,-2,-1). (1 point)
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(e) Consider the line L given by the parameterization r(t) = (2 + 2t,3,—1+ 2t). Is L parallel to

the plane P? Why or why not? (2 points)
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2. Match the following functions with their graphs and level set diagrams. Here each level set
diagram consists of level sets { f(x) = ¢;} drawn for evenly spaced ¢;. (9 point)

(@ 1/(1 +x%+y?) (b) cos \/x2 + 2 () x2 — 2 [
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. Consi i =
3. Consider the function f(x,y) iy

exists. (5 points)
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4. Consider the composition of the function f: R? - R with x, ¥: R® — R, that is

his,t) = f(x(s,0), (s, D))

Compute %(1, 2) using the chain rule and the table of values below. (5 points)
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5. Consider the function f: R2 — R given by f(x, ) = x* + ;

(a) Compute the partial derivatives fx, fy and fy,. (3 points)
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) Is f differentiable at (2,1)? Why or why not? (2 points)
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(c) Give the linear approximation of f at the point (2,1): (2 points)
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) Give the equation of the tangent plane to the graph of f at (2,1,6). (2 points)
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6. The picture below shows some level sets of a function f: R? — R.

(a) At the point p shown, determine the sign of each of the below quantities. (1 points each)

f(p): positive negativem frlp): ‘positivelnegative 0
Sy {(p): positive lnegative. 0 frx(p): positive Eegative 0

D.f(p): positive megativk 0

(b) Draw V f(p) on the picture (1 points).

Extra credit problem: Let E: R? — R be given by E(x,y) = 3x? + xy. Find a 6 > 0 so that
|E(h)| < 0.01 for all h = (x,y) with |h| < 6. Carefully justify why the & you provide is good
enough. (3 points)
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