Math 418: Problem Set 8.

Due date: In class on Wednesday, April 14.
Webpage: http://dunfield.info/418
Office hours: Monday 10-11, Tuesday 3-5.
All problems are from Dummit and Foote, Abstract Algebra, 3rd edition.

1. Fix a prime p. Show that the following subgroup of $\mathrm{GL}_{2} \mathbb{F}_{p}$ is solvable:

$$
B=\left\{\left.\left(\begin{array}{ll}
x & z \\
0 & y
\end{array}\right) \right\rvert\, x, y \in \mathbb{F}_{p}^{\times}, z \in \mathbb{F}_{p}\right\}
$$

Here, the group operation is just matrix multiplication.
2. Let G be a group. The commutator of two elements $g, h \in G$ is $g h g^{-1} h^{-1}$ and is denoted $[g, h]$. Let $[G, G]$ be the subgroup of G generated by all such commutators.
(a) Prove that $[G, G]$ is normal in G and the quotient $G /[G, G]$ is abelian.

Now consider the sequence of subgroups G^{i} where $G^{0}=G$ and $G^{1}=[G, G]$ and generally $G^{i+1}=\left[G^{i}, G^{i}\right]$. By part (a), we have

$$
G=G^{0} \triangleright G^{1} \triangleright \cdots \triangleright G^{i} \triangleright \cdots
$$

(b) Suppose that some $G^{i}=\{1\}$. Prove that G is solvable. (In fact, the converse is true as well.)
(c) Use (b) to prove that S_{4} is solvable.
3. Prove that A_{5} is simple using the following outline. Suppose $G \triangleleft A_{5}$ is normal subgroup which is not $\{1\}$.
(a) Show that G contains some 3-cycle.
(b) Show that G contains every 3-cycle.
(c) Show that A_{5} is generated by all 3-cycles.
(d) Show that A_{5} is simple.

Alternatively, give a geometric proof using the fact that A_{5} is the group of Euclidean isometries of a regular dodecahedron.
4. Section 14.7, \#12. You'll need to use Theorem 18 from Section 4.5 for this to show that if p is a prime dividing the order of G, then G has an element of order p.
5. Section 14.7, \#13.

