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§1.- SMOOTH MANIFOLDS
AND SMOOTH MAPS

Figst let us explain some of our terms. R* denotes the k-dimensional
euclidean space; thus a point z ¢ R*is an k-tuple z = (x,, --- , ;) of
real numbers. _

Let U C R* and V C R’ be open sets. A mapping f from U to V
(written f : U —» V) is called smooth if all of the partial derivatives
3"f/0z;, -+ dx;, exist and are continuous.

More generally let X C R* and Y C R' be arbitrary subsets of
euclidean spaces. A map f : X — Y is called smooth if for each r ¢ X
there exist an open set U C R* containing z and a smooth mapping
F : U — R' that coincides with f throughout U M X.

Iff: X — Yand g:Y — Z are smooth, note that the composition
g of: X — Z is also smooth. The identity map of any set X is auto-
matically smooth.

DEeFINITION. A map f : X — Y is called a diffeomorphism if f carries X
homeomorphically onto ¥ and if both f and f™ are smooth.

We can now indicate roughly what differential topology is about by
saying that it studies those properties of a set X C R* which are invariant
under diffeomorphism.

We do not, however, want to look at completely arbitrary sets X.
The following definition singles out a particularly attractive and useful
class.

DEFINTTION. A subset M C R” is called a smooth manifold of dimension
m if each £ ¢ M has a neighborhood W M M that is diffeomorphic to
an open subset U of the euclidean space R".

Any particular diffeomorphism g : U — W M A is called a para-
metrization of the region W M M. (The inverse diffeomorphism
W N\ M — U is called a system of coordinates on W M M.)
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Rm

Figure 1. Parametrization of a region in M

Sometimes we will need to look at manifolds of dimension zero. By
definition, M is a manifold of dimension zero if each z ¢ M has a neigh-
borhood W M\ M consisting of z alone.

ExampLes. The unit sphere S?, consisting of all (z, y, 2) e R® with
& + 4° + # = 1 is a smooth manifold of dimension 2. In fact the

diffeomorphism
(xi y) 124 (IC, Y, V 1 - xz - yz))

for ¥ + y* < 1, parametrizes the region z > 0 of §?. By interchanging
the roles of z, y, 2, and changing the signs of the variables, we obtain
similar parametrizations of the regionsz > 0,y > 0,2 <0,y < 0,
and z < 0. Since these cover S°, it follows that S? is a smooth manifold.

More generally the sphere 8" C R" consisting of all (z;, -+, )
with Y z% = 1is a smooth manifold of dimension n — 1. For example
S° C R is a manifold consisting of just two points.

A somewhat wilder example of a smooth manifold is given by the
set of all (z, y) ¢ R* with z > 0 and y = sin(1/7).

]

TANGENT SPACES AND DERIVATIVES

To define the notion of derivative df, for a smooth map f : M—-N
of smooth manifolds, we first associate with each z e M C R* a linear
subspace TM, C R* of dimension m called the tangent space of M at z.
Then df, will be a linear mapping from TM_, to TN, where y = f(z).
Elements of the vector space TM, are called tangent vectors to M at z.

Intuitively one thinks of the m~dimensional hyperplane in R* which
best approximates M near z; then TM, is the hyperplane through the

-
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origin that is parallel to this. (Compare Figures 1 and 2.) Similarly
one thinks of the nonhomogeneous linear mapping from the tangent
hyperplane at z to the tangent hyperplane at y which best approxi-
mates f. Translating both hyperplanes to the origin, one obtains df..

Before giving the actual definition, we must study the special case
of mappings between open sets. For any open set U C R’ the tangent
space TU, is defined to be the entire vector space R*. For any smooth
map f: U — V the derivative

df. :R*—R'

is defined by the formula

ar.) = lim (@ + th) — f@)/¢

for z ¢ U, h € R*. Clearly df.(h) is a linear function of h. (In fact df,
is just that linear mapping which corresponds to the I X % matrix
(8f./0x;). of first partial derivatives, evaluated at z.)

Here are two fundaniental properties of the derivative operation:

1 (Chainrule). If f : U — V and g : V — W are smooth maps, with
J(x) = y, then

d(g © j)z = dgv ° djz'

In other words, to every commutative triangle

V.
7N
U——W
gof

of smooth maps between open.subsets of R*, R', R™ there corresponds
a commutative triangle of linear maps

Rl

dV \Q,
B ",

d(g © ).

2. If I is the identity map of U, then dI, is the identity map of R".
More generally, if U C U’ are open sets and

1:U->U’
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us the inclusion map, then again di, is the identity map of R*.
Note also:
3. If L : R* — R' is a linear mapping, then dL, = L.
As a simple application of the two properties one has the following:

AsserTioN. If f is a diffeomorphism between open sets U C R* and
V C R, then k must equal |, and the linear mapping
df, :R* - R

must be nonsingular.

Proor. The composition ™' o f is the identity map of U; hence
d(f™"), odf, is the identity map of R*. Similarly df, o d(f™"), is the identity
map of R'. Thus df, has a two-sided inverse, and it follows that k = [.

A partial converse to this assertion is valid. Let f : U — R* be a
smooth map, with U open in R,

Inverse Function Theorem. If the derivative df. : R* — R is non-
singular, then { maps any sufficiently small open set U’ about x diffeomor-
phically onto an open set f(U').

(See Apostol [2, p. 144] or Dieudonné {7, p. 268].)

Note that f may not be one-one in the large, even if every df, is
nonsingular. (An instructive example is provided by the exponential
mapping of the complex plane into itself.)

Now let us define the tangent space TM, for an arbitrary smooth
manifold A/ C R*. Choose a parametrization

g:U- M CR*

of a neighborhood g(U) of z in M, with g(u) = z. Here U is an open
subset of R™. Think of g as a mapping from U to R¥, so that the derivative

dg. : R - R*

is defined. Set T, equal to the image dg.(R™) of dg.. (Compare Figure 1.)

We must prove that this construction does not depend on the par-
ticular choice of parametrization g. Let h : V — M C R’ be another
parametrization of a neighborhood A(V) of x in M, and let v = A '(z).
Then h™' o g maps some neighborhood U, of u diffeomorphically onto
a neighborhood V, of »v. The commutative diagram of smooth maps

e
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A

UV,
htog

between open sets

gives rise to a commutative diagram of linear maps

and it follows immediately that
Image (dg.) = Image (dh,).
Thus TM., is well defined.

Proor THAT TM, 1S AN m-DIMENSIONAL VECTOR SPACE. Since
-1,
g g(U) > U

is a smooth mapping, we can choose an open set W containing z and
a smooth map F : W — R™ that coincides with ¢g™* on W N ¢(U).
Setting U, = ¢g~'(W M ¢g(U)), we have the commutative diagram

W-
U inclusion R
Rk
5 i
R" identity R™

This diagram clearly implies that dg, has rank m, and hence that its
image TM, has dimension m.

and therefore

Now consider two smooth manifolds, ¥ C R* and N C R', and a
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smooth map
f:M—>N
with {(x) = y. The derivative
df, :TM,— TN,

is defined as follows. Since f is smooth there exist an open set W con-
taining z and a smooth map
F:W—R

that coincides with f on W M M. Define df.(v) to be equal to dF.(v)
jorallv e TM,.

To justify this definition we must prove that dF,(v) belongs to TN,
and that it does not depend on the particular choice of F.

Choose parametrizations

g:U>MCR' and h:V—->NCR

for neighborhoods g(U) of z and (V) of y. Replacing U by a smaller
set if necessary, we may assume that g(U) C W and that f maps g(U)
into A(V). It follows that
b lofog:U—V
is a well-defined smooth mapping.
Consider the commutative diagram

W————-—-Ii—%R'

Joo T
hlofoyg

U———DHV
of smooth mappings between open sets. Taking derivatives, we obtain

a commutative diagram of linear mappings

Rk sz ; 13

dg,:[\ /I\ dh,,
d(h™ o fog),

R" i
where u = ¢ (z), v = 7' (y).

It follows immediately that dF. carries TM, = Image (dg,) into
TN, = Image (dh,). Furthermore the resulting map df. does not
depend on the particular choice of F, for we can obtain the same linear

Y
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transformation by going around the bottom of the diagram. That is:
df. = dh,od(h™" o fo g), o (dg.)”"
This completes the proof that
) df, . TM,— TN,
is a well-defined linear mapping.

As before, the derivative operation has two fundamental properties:

1. (Chain rule). If f : M — N and g : N — P are smooth, with f(x) = y,
then

d(gof). = dg, o df..

2. If I s the idenlity map of M, then dI, is the identity map of TM..
More generally, if M C N with inclusion map i, then TM, C TN, with
inclusion map di,. (Compare Figure 2.)

TMy

TNy

Figure 2. The langent space of a submanifold

The proofs are straightforward.
As before, these two properties lead to the following:

AssgrTiON. If f : M — N is a diffeomorphism, then df, : TM, — TN,
s an isomorphism of vector spaces. In particular the dimension of M
must be equal to the dimenston of N.

REGULAR VALUES

Let f : M — N be a smooth map between manifolds of the same
dimension.* We say that x ¢ M is a regular point of { if the derivative

* This restriction will be removed in §2.
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df. is nonsingular. In this case it follows from the inverse function
theorem that f maps a neighborhood of z in M diffeomorphically onto
an open set in N. The point y ¢ N is called a regular value if f™'(y)
contains only regular points.

If df. is singular, then z is called a eritical point of f, and the image
f(z) is called a critical value. Thus each y ¢ N is either a critical value or a
regular value according as f ™' (y) does or does not contain a critical point.

Observe that if M is compact and y e N is a regular value, then f™*(y)
18 a finile set (possibly empty). For f(y) is in any case compact, being
a closed subset of the compact space M; and f'(y) is discrete, since f
is one-one in a neighborhood of each z ¢ {7 (y).

For a smooth f : M — N, with M compact, and a regular value y ¢ N,
we define #f~' (y) to be the number of points in f~*(y). The first observation
to be made about #'(y) is that it is locally constant as a function of y
(where y ranges only through regular values!). Le., there is a neighbor-
hood V. C N of y such that #f'(y') = # ' (y) foranyy' e V. [Letz,, - - - , z,
be the points of f7'(y), and choose pairwise disjoint neighborhoods
U, - -+, U, of these which are mapped diffeomorphically onto neighbor-
hoods Vy, -+, ¥V, in N. We may then take

V=V.NV. NNV, —fM~U, — - — U]

THE FUNDAMENTAL THEOREM OF ALGEBRA

As an application of these notions, we prove the fundamental theorem
of algebra: every nonconstant complex polynomial P(z) must have a zero.

For the proof it is first necessary to pass from the plane of complex
numbers to a compact manifold. Consider the unit sphere S* C R® and
the stereographic projection

ke :8 — {(0,0,)} > R* X0 CR®

from the “north pole” (0, 0, 1) of 8% (See Figure 3.) We will identify
R® X 0 with the plane of complex numbers. The polynomial map P from
R* X 0 to itself corresponds to a map f from S* to itself; where

f(x) = h;'Ph.(z) for z 5 (0,0, 1)
f(O: 0, 1) = (0’ 0, 1)
It is well known that this resulting map f is smooth, even in a neighbor-

Y
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(0,0,1)

Re(x) R%0

Figure 3. Stereographic projection

hood of the north pole. To see this we introduce the stereographic
projection h_ from the south pole (0, 0, —1) and set

QR) = h_fh ().
Note, by elementary geometry, that
hohZ2) = 2/|2]* = 1/z.

Now if P(2) = ae2” + a,2"' + --+ + a., with a, ¥ 0, then a short
computation shows that

Q@) =2/ + az + -+ + a@z).

Thus @ is smooth in a neighborhood of 0, and it follows that f = hZ'Qh_
is smooth in a neighborhood of (0, 0, 1).

Next observe that f has only a finite number of critical points; for P -
fails to be a local diffeomorphism only at the zeros of the derivative
polynomial P'(z) = Y. a,.; j2""!, and there are only finitely many
zeros since P’ is not identically zero. The set of regular values of f,
being a sphere with finitely many points removed, is therefore connected.
Hence the locally constant function #/'(y) must actually be constant
on this set. Since #f '(y) can’t be zero everywhere, we conclude that
it is zero nowhere. Thus f is an onto mapping, and the polynomial P
must have a zero.



