

2. Consider the vectors \mathbf{a} , \mathbf{b} , \mathbf{c} and \mathbf{r} in the plane of this piece of paper. For each part, circle the best answer. (1 point each)

(c)
$$\mathbf{b} \cdot \mathbf{c} = \begin{bmatrix} \text{positive (negative) zero} \end{bmatrix}$$
 Since $\begin{cases} 5 \\ \text{is} \end{cases} > \pi/2$

(a) Check the box next to the only true statement below. The limit $\lim_{(x,y)\to(0,0)} f(x,y)$ does not exist because

	the numerator and denominator are both zero at (0,0).	
l		

- the limit as one approaches (0,0) along the lines y=0 and x=0 are different.
- the limit as one approaches (0,0) along the paths $y = x^2$ and x = 0 are different.
- the limit as one approaches (0,0) along the lines y = x and x = 0 are different.
- (b) Compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$; if a partial derivative does not exist, write "DNE".

$$\frac{\partial f}{\partial x}(0,0) = \boxed{ } \qquad \frac{\partial f}{\partial y}(0,0) = \boxed{ } \qquad \boxed{ }$$

1)
$$\vec{V} = \text{vel. vector along L}$$

= $\langle 0, 1, -1 \rangle$
 $Q = \langle 2, 1, 1 \rangle$ on $L(\omega t = 0)$
 $\vec{W} = \vec{PQ} = \langle 1, -1, -1 \rangle$
 $\vec{n} = \vec{V} \times \vec{\omega} = \langle -2, -1, -1 \rangle$

1)
$$\vec{V} = \text{vel. vector along L}$$

$$= \langle 0, 1, -1 \rangle$$

$$Q = \langle 2, 1, 1 \rangle \text{ on L} (\omega t = 0)$$

$$\vec{W} = \vec{PQ} = \langle 1, -1, -1 \rangle$$

$$\vec{R} = \vec{V} \times \vec{W} = \langle -2, -1, -1 \rangle$$

$$f(0, Y) = y^{3}/y = y \rightarrow 0 \text{ as }$$

$$\vec{V} = \vec{V} \times \vec{W} = \langle -2, -1, -1 \rangle$$

$$f(0, Y) = y^{3}/y = y \rightarrow 0 \text{ as }$$

$$\vec{V} = \vec{V} \times \vec{W} = \langle -2, -1, -1 \rangle$$

$$f(0, Y) = \vec{V} \times \vec{W} = \vec{V}$$

a+b

- **4.** The level curves of a differentiable function f(x, y) on $[-4, 4] \times [0, 8]$ are shown below.
 - (a) Circle the best estimate for $\int_{a}^{-1} \int_{c}^{8} f(x, y) dy dx$.

$$-30$$
 -24 -18 -12 -6 0 6 12 18 24 30

(2 points)

$$\iint_{R} f dA = Avea(R) \cdot Ave(fon R)$$

$$= 6 \cdot 3 = 18$$

(b) Find the points on the curve $x^2 + (y-4)^2 = 4$ where f attains its absolute maximum and minimum values.

at the point(s)
$$(-2, 4)$$

(1 point)

Min value =
$$-3$$

(1 point)

(c) The absolute minimum value of f on the region $D = \{x^2 + (y-4)^2 \le 4\}$ is:

(1 point)

5. Consider the function $g: \mathbb{R}^2 \to \mathbb{R}$ whose graph is shown at right. Let A and B be the points in \mathbb{R}^2 corresponding to the two "peaks" of the graph, and C be the point in \mathbb{R}^2 corresponding to the dot on the graph. For each part, circle the answer that is most consistent with the picture. (1 point each)

(a) At the point A, the function g is:

continuous differentiable both neither

(b) At the point B, the function g is:

continuous differentiable both neither

(c) At the point C, the function $\frac{\partial g}{\partial x}$ is: negative zero

positive

6. An exceptionally tiny spaceship positioned as shown is traveling so that its x-coordinate decreases at a rate of 1/3 m/s and y-coordinate increases at a rate of 1/2 m/s. Use the Chain Rule to calculate the rate at which the distance between the spaceship and the point (0,0) is increasing. (5 points)

$$D = \int x^{2} + y^{2}$$
 is $\int 3^{2} + 4^{2} = 5$ at cur.

$$D_{x} = \frac{1}{2} (x^{2} + y^{2})^{-1/2} \cdot 2x = \frac{x}{D}$$

$$D_{y} = \frac{y}{D}$$

Distances in meters

Rocket courtesy of xkcd.com

In preture, graph contains χ - and γ - $a\chi = 5 = f_{\chi}(0,0) = f_{\gamma}(0,0) = 0$,

=) as f(0,0) = 0 that tangent

plane is $\chi = 0$

- 7. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be the function whose graph is shown at right.
 - (a) Find the tangent plane to the graph at (0,0,0). (1 point)

(b) The partial derivative $\frac{\partial^2 f}{\partial x \partial y}$ (0,0) is (circle your answer):

- **8.** Let C be the curve in \mathbb{R}^2 parameterized by $\mathbf{r}(t) = \langle -t^2, t \rangle$ for $0 \le t \le 1$.
- $\emptyset x = -y^2 \xrightarrow{y^3} x$
- (a) Mark the picture of C from among the choices below. (1 point)

(b) For the vector field $\mathbf{F} = \langle y, -x \rangle$ compute $\int_C \mathbf{F} \cdot d\mathbf{r}$. (3 points)

$$\int_{C}^{2} dt = \int_{C}^{2} \langle t, t^{2} \rangle \cdot \langle -2t, 1 \rangle dt = \int_{C}^{2} -2t^{2} + t^{2} dt$$

$$= -\int_{C}^{2} t^{2} dt = -\frac{t^{3}}{3} |_{C}^{2} = -\frac{1}{3}$$

$$\int_C \mathbf{F} \cdot d\mathbf{r} = -\frac{1}{3}$$

9. Let $g: \mathbb{R}^2 \to \mathbb{R}$ be the function whose graph is shown at right, and let C be the indicated curve in the xy-plane Evaluate the line integral:

$$\text{Suff} \int_{C} \nabla g \cdot d\vec{r} = -10$$

$$\int \nabla g \cdot dr = g(B) - g(A)$$
= 10 - 20

(A)
$$\int_0^{\pi/2} \int_0^{\pi/2} \int_1^2 \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta$$

$$(B) \int_0^{\pi} \int_{\pi/2}^{\pi} \int_0^2 \rho^2 \sin\phi \ d\rho \ d\phi \ d\theta$$

11. For each of the given integrals, label the box below the picture of the corresponding region of integration.(2 points each)

(A)
$$\int_0^1 \int_0^{1-x} \int_0^1 f(x, y, z) \, dz \, dy \, dx$$

(B)
$$\int_{0}^{1} \int_{-1+z}^{1-z} \int_{-z}^{z} g(x, y, z) \, dx \, dy \, dz$$

12. Let V be the solid lying below the plane z=1, above the surface $z=-\sqrt{x^2+y^2}$, and inside the cylinder $x^2 + y^2 = 4$. Set up an integral computing the mass of V if the mass density is $\rho(x, y, z) = z + 2$. (4 points)

Use cylindrical

Be sure to fill in your variables of integration in the spaces after the d's.

Mass of
$$V = \int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{1} \left(\frac{7}{2} + 2 \right) r d d d d d d d d$$

- 13. Consider the transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(u, v) = (uv, u + v). Let D be the triangle in the uv-plane whose vertices are (0,0),(1,0),(1,1). Let S be the region T(D) in the xy-plane.
 - (a) Mark the box below the picture of S; here the dotted grids are made of unit-sized boxes. (2 points)

(b) Express $\iint_C y \, dA$ as an integral over D:

$$\int_0^1 \int_0^u (u + v)(w - v) dv du$$

(2 points)

Scratch Space

14. The curve $y = x^2$ in the xy-plane is revolved about the x-axis in \mathbb{R}^3 to produce a surface. Parameterize the **portion of this surface with** $y \ge 0$ **and** $1/2 \le x \le 1$ which is shown at right. Be sure to specify the domain D. (3 points)

Use rotated cylindrical coordinates. On this surface $r = x^2$

$$r(u,v) = \langle u, u^2 \cos v, u^2 \sin v \rangle$$

$$D = \left\{ (u, v) \middle| 1/2 \le u \le |, -\pi/2 \le v \le \pi/2 \right\}$$

15. A vector field $\mathbf{F} = \langle P, Q \rangle$ is defined on the plane minus the origin and $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} + 2$ for all $(x, y) \neq (0, 0)$. Let A and B be the two oriented curves shown at the right drawn against a grid of unit squares, and suppose $\int_{\mathbb{R}} \mathbf{F} \cdot d\mathbf{r} = 16$. Evaluate the integral:

(2 points)

Let D be the region shown. Then

$$= \iint_{\partial X} \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} dA = 2 \operatorname{Area}(D) = 24$$
So $\int_{A} \vec{F} \cdot d\vec{r} = \int_{B} \vec{F} \cdot d\vec{r} - 24 = -8$.

(0, 1)

(0, -1)

17. For this problem, $G = \langle yz + 2x^2, 2xy, xy^2 \rangle$ and S is the boundary of the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ oriented with the outward pointing normal vector n. Circle the best response for each of the following.

(a)
$$\iint_{S} \mathbf{G} \cdot \mathbf{n} \ dS = \begin{bmatrix} -5 & -3 & -1 & 0 & 1 & 3 & 5 \end{bmatrix}$$
 (2 points)

(b)
$$\iint_{S} (\operatorname{curl} \mathbf{G}) \cdot \mathbf{n} \, dS$$
 is negative zero positive (1 point)

(c) Suppose a charge Q is placed at $\mathbf{p} = \langle 1/2, 1/2, 1/2 \rangle$ and let $\mathbf{E} = \frac{Q}{4\pi\epsilon_0} \frac{1}{|\mathbf{r} - \mathbf{p}|^3} (\mathbf{r} - \mathbf{p})$ for $\mathbf{r} = \langle x, y, z \rangle$ be the (1 point)

- 18. Consider the surface S parameterized by $\mathbf{r}(u, v) = \langle u, u^2 + v^2, v \rangle$ defined on $D = \{(u, v) \mid 0 \le u \le 1, 0 \le v \le 1\}$ and oriented by the normal vector n with positive second component.
 - (a) Mark the box below the picture of S. (2 points)

 $\vec{r}_{u} \times \vec{r}_{v} = \begin{vmatrix} \vec{\tau} & \vec{j} & \vec{k} \\ 1 & 2u & 0 \\ 0 & 2v & 1 \end{vmatrix} = \langle 2u, -1, 2v \rangle \text{ direction, fixed here,}$ $\iint_{S} \langle \vec{\tau}_{1}, 3, -x \rangle \cdot \vec{n} = \iint_{O} \langle v_{1}, 3, -u \rangle \cdot (-\vec{r}_{u} \times \vec{r}_{v}) \, du \, dv$

= \[\int \] - \(2uv + 3 + \(2uv \) dudv

 $= \left(\frac{1}{3} \right)^{3} = 3$

 $\iint \langle z, 3, -x \rangle \cdot \mathbf{n} \ dS =$

(c) Fill in the integrand so that the surface area of S is:

 $\int_{0}^{1} \int_{0}^{1} \sqrt{1 + 4/u^{2} + v^{2}}$ (1 point)

Scratch Space

- (c) The function div H is constant. The value of div H at any point is: negative zero (positive) (1 point)
- (d) The vector field curl F is constant. The value of curl F at any point is: $\langle 0, 0, -1 \rangle$ $\langle 0, 0, 0 \rangle$ $\langle 0, 0, 1 \rangle$ (1 point)
- (e) Let C be the circle $\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^2=\frac{1}{4}$, and n the outward pointing normal vector in the plane. The 2D flux $\int_C \mathbf{H} \cdot \mathbf{n} \, ds$ is: (1 point) negative

(d)
$$\int_C \operatorname{div} \mathbf{F} \, ds$$
 is: negative zero (positive) (1 point)

(e) Is F conservative? yes (no) (1 point)

by (b).

21. Mark the picture of the curve in \mathbb{R}^3 parameterized by $\mathbf{r}(t) = \langle t \cos t, t \sin t, t \rangle$ for $0 \le t \le 4\pi$. (2 points)

- 22. Let S and H be the surfaces at right; the boundary of S is the unit circle in the xy-plane, and H has no boundary. 1 pt each
 - (a) The integral $\iint_H x^2 y^2 + z^2 dS$ is:

 | negative zero positive | 5 pos. on H
 - (b) The vector field $\mathbf{F} = \langle y + z, -x, yz \rangle$ has $\operatorname{curl} \mathbf{F} = \langle z, 1, -2 \rangle$. The flux $\iint_{S} (\operatorname{curl} \mathbf{F}) \cdot \mathbf{n} \, dS$ is:

(c) For $G = \langle x, y, z \rangle$, the flux $\iint_S G \cdot \mathbf{n} \, dS$ is: negative zero positive

(d) For $\mathbf{E} = \langle z, x, 2 \rangle$, the flux $\iint_S \mathbf{E} \cdot \mathbf{n} \ dS$ is: $\begin{vmatrix} -5\pi & -4\pi & -3\pi \\ \end{vmatrix} - 3\pi \begin{vmatrix} -2\pi \\ \end{vmatrix} - \pi \begin{vmatrix} 0 & \pi & 2\pi \\ \end{vmatrix} 3\pi \begin{vmatrix} 4\pi & 5\pi \\ \end{vmatrix}$

Scratch Space b) Use Stokes' with Γ corrected clockwise: $\vec{r} = (sint, cost, \vec{o})$. $\vec{r} = (sint, cost, \vec{o})$. $\vec{r} = (sint, cost, \vec{o})$. $\vec{r} = (sint, cost, \vec{o})$. = $\binom{2\pi}{1}$ dt = 2π c) Let D be the disc in the xy-plane bounded by C,

R the region with oR = 5 + D. Then SSS div G dV d) Similar, but div = 0 $= \iint_{S} \vec{G} \cdot d\vec{S} + \iint_{S} \vec{G} \cdot dS$ $\Rightarrow \iint_{S} \vec{E} \cdot \vec{n} \, dA = \iint_{D} \vec{E} \cdot (0,0,-1) \, dA$ = 0 as n = (0,0,1) and 6 = (x,y,0) = SS = 2 dA = -2 T.