Math 518: HW 5 due Wednesday, October 1, 2014.

1. Problem 8-3 of Lee on page 199. Do only the case of a smooth manifold without boundary.
2. Problem 8-13 of Lee on page 201.
3. Problem 7-2 of Lee on page 171.
4. Problem 7-6 of Lee on page 172 .
5. Problem corrected Sept 25. Consider

$$
G=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a \in \mathbb{R}^{\times} \quad \text { and } \quad b \in \mathbb{R}\right\}
$$

One way to think of G is as the group of affine transformations of \mathbb{R}, that is, diffeomorphisms of the form $x \mapsto a x+b$.
(a) Prove that G with the operation of matrix multiplication is a Lie group.
(b) Find an explicit formula for the left invariant vector field X on G where

$$
X_{e}=\left.\frac{\partial}{\partial a}\right|_{e}+\left.\frac{\partial}{\partial b}\right|_{e}
$$

(c) Do the same for the right invariant vector field with the same value of X_{e}. Is it the same as your answer in (b)?
(d) Using the identification of G to \mathbb{R}^{2} with the y axis removed, draw pictures of the your vector fields in (b) and (c).
6. Problem 7-16 of Lee on page 172 .

