Math 518: HW 6 due Wednesday, October 8, 2014.

- 1. Consider S^3 as the unit sphere in \mathbb{C}^2 .
 - (a) The *Hopf action* of S^1 on S^3 is defined by $z \cdot w = zw$ where $z \in S^1$ and $w = (w_1, w_2) \in \mathbb{C}^2$. Show that this action is smooth and that its orbits are disjoint unit circles in \mathbb{C}^2 whose union is S^3 .
 - (b) Consider the flow $\Theta: \mathbb{R} \times S^3 \to S^3$ defined by $\Theta_t(w) = e^{it}w$. Explicitly calculate the infinitesimal generator V of Θ . Your formula for V should associate to each $w \in S^3$ a vector $V_w \in T_w S^3$ where the latter is thought of as a subspace of $T_w \mathbb{C}^2 = \mathbb{C}^2$.
 - (c) Prove or disprove: The vector field *V* from part (b) is nowhere vanishing.

The quotient of S^3 under these actions, that is, the orbit space, turns out to be S^2 . The map $S^3 \rightarrow S^2$ is called the *Hopf fibration*. A superb video visualizing this map is: http://www.nilesjohnson.net/hopf.html.

- 2. (a) Problem 7-13 of Lee on page 172.
 - (b) Prove or disprove: U(n) is compact.
- 3. Problem 9-2 of Lee of page 245.
- 4. Problem 9-8 of Lee of page 246.
- 5. Problem 8-20 of Lee on page 202.
- 6. Problem 8-25 of Lee on page 203.