Math 518: HW 7 due Wednesday, October 22, 2014.

- 1. Problem 8-26 of Lee on page 203.
- 2. Problem 8-28 of Lee on page 203.
- 3. Problem 20-5 on page 536.
- 4. Problem 20-4 on page 536.
- 5. (a) Combine Problems 1 and 2 to show that the Lie algebra of $SL_n\mathbb{R}$ is the subset of $M_n(\mathbb{R})$ consisting of matrices of trace 0.
 - (b) Explain how the result in (a) is consistient with your answer to Problem 4.
- 6. Let *V* be a \mathbb{R} -vector space with basis $\{e_1, e_2, ..., e_m\}$ and consider the dual basis $\{\alpha^1, \alpha^2, ..., \alpha^m\}$ of *V**. Let *W* be another \mathbb{R} -vector space with basis $\{f_1, f_2, ..., f_n\}$ and dual basis $\{\beta^1, \beta^2, ..., \beta^n\}$ for *W**. Suppose *T*: *V* \rightarrow *W* is a linear transformation. Let *A* be the matrix of *T* and let *A** be the matrix of *T**: *W** \rightarrow *V** with respect to our choosen bases. Prove that *A** is just the transpose of *A*.
- 7. Problem 11-1 of Lee on page 299.