Math 518: HW 8 due Wednesday, October 29, 2014.

1. Problem 11-4 of Lee on pages 299-300. You may assume that M has no boundary.
2. Let $G=G L_{n} \mathbb{R}$. Define n^{2} covector fields $\sigma_{i j}$ on G for $1 \leq i, j \leq n$ as follows. At a point $X=\left(x_{i j}\right)$ in G, define

$$
\sigma_{i j}=\sum_{k=1}^{n} y_{i k} d x_{k j} \quad \text { where } Y=\left(y_{i k}\right) \text { is the inverse matrix to } X .
$$

Since taking the inverse is a smooth function on the Lie group G, the $\sigma_{i j}$ are in $\Omega^{1}(M)$.
(a) Prove that each $\sigma_{i j}$ is left-invariant. That is, for every $A \in G$, prove that $\left(L_{A}\right)^{*}\left(\sigma_{i j}\right)=\sigma_{i j}$.
(b) Prove that at every $A \in G$, the 1 -forms $\sigma_{i j}$ form a basis for $T_{A}^{*} G$.
(c) Now take $n=2$ and consider the circle $C \subset G$ which is the image of $\gamma(t)=\left(\begin{array}{cc}\cos t & -\sin t \\ \sin t & \cos t\end{array}\right)$ for $t \in[0,2 \pi]$. Calculate each of the integrals $\int_{C} \sigma_{i j}=\int_{0}^{2 \pi} \gamma^{*}\left(\sigma_{i j}\right)$.
3. Problem 11-13 of Lee on Page 301.
4. Let g be the round Riemannian metric on S^{2}, that is, $g_{p}: T_{p} S^{2} \times T_{p} S^{2} \rightarrow \mathbb{R}$ is the restriction to $T_{p} S^{2} \subset T_{p} \mathbb{R}^{3}$ of the usual dot product on \mathbb{R}^{3}, where as always $S^{2}=\left\{x \in \mathbb{R}^{3}| | x \mid=1\right\}$. Compute the coordinate form of g with respect to each of the following charts. That is, for a chart (U, ϕ) compute the four functions $g_{i j}: \phi(U) \rightarrow \mathbb{R}$ so that

$$
\left(\phi_{*} g\right)_{\left(x_{1}, x_{2}\right)}=\sum_{i, j=1}^{2} g_{i j}\left(x_{1}, x_{2}\right) \cdot\left(d x_{i} \otimes d x_{j}\right)
$$

(a) Sterographic projection away from $(0,0,1)$.
(b) Projection of the open upper hemisphere of S^{2} onto the $x y$-plane.

In which of these coordinates do the angles implicitly assigned by $\phi_{*} g$ agree with the ordinary Euclidean angles on \mathbb{R}^{2} ?
5. Problem 13-21 of Lee on page 347.
6. Problem 12-7 of Lee on page 325.

