Math 518: HW 9 due Wednesday, November 5, 2014.

- 1. Suppose $\alpha_1, \ldots, \alpha_k$ are elements of V^* . Show that they are linearly dependent if and only if $\alpha_1 \wedge \cdots \wedge \alpha_k = 0$ in $\Lambda^k(V)$.
- 2. Let η be the element of $\Omega^2(S^2)$ defined on page 3 of the lecture notes for Oct 29. Using your choice of chart (U, ϕ) from Problem 4 on HW 8, give the explicit coordinate form for $(\phi^{-1})^*(\eta)$ in $\Omega^2(\phi(U))$. That is, find the function $f: \phi(U) \to \mathbb{R}$ so that $(\phi^{-1})^*(\eta) = f(x_1, x_2) dx_1 \wedge dx_2$.
- 3. Suppose $F: M \to N$ is smooth. If $\omega \in \Omega^k(N)$ and $\eta \in \Omega^\ell(N)$, prove that

$$F^*(\omega \wedge \eta) = (F^*\omega) \wedge (F^*\eta)$$
 in $\Omega^{k+\ell}(M)$.

- 4. In this problem, you'll give two proofs that S^n is orientable.
 - (a) Prove the following general fact and then apply it to S^n : Suppose *M* is a smooth manifold that is the union of two connected orientable open submanifolds *U* and *V* with $U \cap V$ connected. Prove that *M* is orientable.
 - (b) Generalize the form η in Problem 2 above from S^2 to S^n and show that it defines an orientation form. Hint: There's no need for messy computations here.
- 5. Prove that any Lie group *G* is an orientable manifold.
- 6. Let Θ : $\mathbb{R} \times M \to M$ be a global flow of an orientable manifold M. For each $t \in \mathbb{R}$, prove that the diffeomorphism Θ_t : $M \to M$ is orientation preserving.