Math 518: HW 10 due Wednesday, November 12, 2014.

1. The lecture notes for October 31 give two definitions of an orientation of M^{n} on page 2. Prove that (a) implies (b).
2. Consider the 2-torus $T=S^{1} \times S^{1}=\left\{(w, x, y, z) \in \mathbb{R}^{4} \mid w^{2}+x^{2}=1\right.$ and $\left.y^{2}+z^{2}=1\right\}$ with the product orientation determined by the standard orientation on S^{1}. Compute $\int_{T} \omega$ for

$$
\omega=x y z d w \wedge d y \text { in } \Omega^{2}\left(\mathbb{R}^{4}\right) .
$$

Hint: Use Lee's Proposition 16.8 rather than just the definition of $\int_{T} \omega$.
3. Let η be the element of $\Omega^{2}\left(S^{2}\right)$ defined on page 3 of the lecture notes for October 29 which also featured prominently on the last HW.
(a) Prove that η is the Riemannian area form for the usual round Riemannian metric on S^{2}.
(b) Use η to calculate the area of S^{2}.
4. Exercise 14.28 of Lee on page 368 .
5. Exercise 14.34 of Lee on page 372 .
6. Problem $14-9$ of Lee on Page 376.

