Math 518: HW 12 due Wednesday, December 3, 2014.

- 1. Problem 17-1 of Lee on page 464.
- 2. Suppose *S* is an embedded submanifold of *M*. A retract is a smooth map $R: M \to S$ which is the identity on *S*. Prove that $R^*: H^*(S) \to H^*(M)$ is injective.
- 3. Let $M = M_1 \times M_2$ and let $P_i: M \to M_i$ be the natural projections. Prove or disprove: Each $P_i^*: H^*(M_i) \to H^*(M)$ is injective.
- 4. Let $\Omega_c^*(M)$ denote the subalgebra of differential forms with compact support.
 - (a) Show you can define $H_c^*(M)$ using $\Omega_c^*(M)$ analogously to how $H^*(M)$ is defined from $\Omega^*(M)$.
 - (b) If *M* is connected and non-compact, prove that $H_c^0(M) = 0$.
 - (c) Prove or disprove: A smooth map $F: M \to N$ induces a homomorphism $F^*: H_c^*(N) \to H_c^*(M)$.
- 5. In the notes for Wednesday, November 18, complete the proof of the Homotopy Operator Lemma in the case of $\beta = f(x, t) dt \wedge dx_1 \wedge \cdots \wedge dx_{k-1}$; see the bottom of page 5 for details.