Math 418: HW 8 due Wednesday, April 15, 2015.

Webpage: http://dunfield.info/418

Office hours: Monday and Tuesday from 2:30–3:30pm and by appointment.

1. Fix a prime p. Show that the following subgroup of $GL_2\mathbb{F}_p$ is solvable:

$$B = \left\{ \left(\begin{array}{cc} x & z \\ 0 & y \end{array} \right) \mid x, y \in \mathbb{F}_p^{\times}, z \in \mathbb{F}_p \right\}$$

Here, the group operation is just matrix multiplication.

- 2. (a) Prove directly from the definition that S_4 is solvable.
 - (b) Prove that A_5 is simple using the following outline.
 - (i) Show A_5 has 5 distinct conjugacy classes of elements, and count the number of elements in each class.
 - (ii) For any normal subgroup $H \triangleleft G$ show that H is a union of conjugacy classes of G.
 - (iii) If $N \triangleleft A_5$ use that |N| divides $|A_5|$ and parts (i) and (ii) to show that $N = \{1\}$ or A_5 .

Alternatively, give a geometric proof using the fact that A_5 is the group of Euclidean isometries of a regular dodecahedron.

Remark: A_5 is the smallest of all the simple groups. In fact, every group of order less than 60 is solvable.

- (c) Use (b) to show that S_n is not solvable for $n \ge 5$.
- 3. (Section 14.7, #12) Let L be the Galois closure of a finite extension $\mathbb{Q}(\alpha)$ over \mathbb{Q} . If p is a prime dividing the order of $\mathrm{Gal}(L/\mathbb{Q})$, show that there is a subfield F of L with [L:F]=p and $L=F(\alpha)$.

Hint: You'll need to use Theorem 18 from Section 4.5: if p is a prime dividing the order of a finite group G, then G has an element of order p.

- 4. (Section 14.7, #13) Let $F \subset \mathbb{R}$ be a field. Let a be an element of F which has a real n^{th} root $\alpha = \sqrt[n]{a}$, and set $K = F(\alpha)$. Prove that if L is any Galois extension of F contained in K then $[L:F] \leq 2$.
- 5. For a field k, here are some basic problems for varieties in k^2 , where we take the coordinates to be (x, y). Except for part (b), assume that k is algebraically closed.
 - (a) Let V be the x-axis, i.e. $V = \mathbf{V}(y)$. Prove that V is irreducible. Hint: Show a prime ideal is radical.
 - (b) Give an example of a field k, necessarily not algebraically closed, for which the x-axis is *reducible*.
 - (c) Prove that $V = \mathbf{V}(x y)$ is irreducible.
 - (d) Prove that $S = \{(a, a) \in k^2 \mid a \neq 1\}$ is *not* an algebraic variety if $k = \mathbb{C}$.
 - (e) What is the decomposition of $V = \mathbf{V}(x^2 y^2)$ into irreducibles? **Warning:** The answer depends on k!