## Math 416: HW 2 due Friday, February 5, 2016.

Webpage: http://dunfield.info/416
Office hours: Mon 3:30-4:30, Wed 11-12, Thur 3:30-4:30, and by appointment. My office is 378 Altgeld Hall.

Textbooks: In the assignment, the two texts are abbreviated as follows:
[FIS] Freidberg, Insel, Spence, Linear Algebra, 4th edition, 2002.
[B] Breezer, A First Course in Linear Algebra, Version 3.5, 2015.

## Problems:

1. In these questions, you will determine whether one vector is a linear combination of two others.
(a) Section 1.4 of [FIS], Problem 3: parts (a) and (c).
(b) Section 1.4 of [FIS], Problem 4: parts (a) and (e).
2. In class, I defined the span of a finite list of vectors $u_{1}, u_{2}, \ldots, u_{n}$. More generally, given a nonempty subset $S$ of a vector space $V$, one defines $\operatorname{span}(S)$ to be the set of all linear combinations of vectors in $S$. Here are some problems about the span.
(a) Section 1.4 of [FIS], Problem 5: parts (g) and (h).
(b) Suppose $S_{1}$ and $S_{2}$ are subsets of a vector space $V$. Show that if $S_{1}$ is contained in $S_{2}$, then $\operatorname{span}\left(S_{1}\right)$ is contained in $\operatorname{span}\left(S_{2}\right)$.
(c) Let $V=\mathbb{R}^{2}$ and $S=\{(x, y)$ where $x \geq 0$ and $y \geq x\}$. Find $\operatorname{span}(S)$.
3. Solve each of the following linear systems by writing down its augmented matrix, doing row operations to get a matrix in reduced row echelon form, and using that to find all of the solutions. You should label your row operations as in §RREF of [B].
(a)

$$
\begin{array}{r}
2 x_{1}+x_{2}=0 \\
x_{1}+x_{2}=1 \\
3 x_{1}+4 x_{2}=5 \\
3 x_{1}+5 x_{2}=7
\end{array}
$$

(b)

$$
\begin{array}{r}
y_{1}+2 y_{2}-y_{3}=1 \\
y_{1}+y_{2}+2 y_{3}=0 \\
5 y_{1}+8 y_{2}+y_{3}=1
\end{array}
$$

(c)

$$
\begin{aligned}
2 x_{1}+4 x_{2}+5 x_{3}+7 x_{4} & =18 \\
x_{1}+2 x_{2}+x_{3}-x_{4} & =3 \\
4 x_{1}+8 x_{2}+7 x_{3}+5 x_{4} & =24
\end{aligned}
$$

4. Suppose that $A, B$, and $C$, are $m \times n$ matrices with real coefficients. Prove the following three facts from the definition of row equivalence.
(a) $A$ is row equivalent to $A$.
(b) If $A$ is row equivalent to $B$, then $B$ is row equivalent to $A$.
(c) If $A$ is row equivalent to $B$, and $B$ is row equivalent to $C$, then $A$ is row equivalent to $C$.

Note: A relationship that satisfies these three properties is known as an equivalence relation; this is a formal way of saying that a relationship behaves like equality, without requiring the relationship to be as strict as equality itself.
5. Suppose $A$ is an $m \times n$ matrix with real entries. The null space of $A$, denoted $\mathcal{N}(A)$, is the set of all solutions in $\mathbb{R}^{n}$ to the linear system $\mathcal{L S}(A, 0)$, where here 0 is the zero vector in $\mathbb{R}^{m}$. Prove that $\mathcal{N}(A)$ is a subspace of $\mathbb{R}^{n}$.

