Math 416: HW 5 due Friday, March 4, 2016.

Webpage: http://dunfield.info/416
Wednesday's lecture: Prof. Chris Leininger will be substituting for me on Wednesday, March 2 as I will be out of town then.

Office hours: Due to my travels, my office hours this week will beThursday 3:30-5:00, and by appointment on Friday. My office is 378 Altgeld Hall.

Textbook: In the assignment, the main text is abbreviated as follows:
[FIS] Freidberg, Insel, Spence, Linear Algebra, 4th edition, 2002.

Problems:

1. Section 2.3 of [FIS], Problem 1.
2. Section 2.3 of [FIS], Problem 2.
3. Give matrices $A, B \in M_{2 \times 2}(\mathbb{R})$ where $A B$ is the zero matrix but $B A$ is not.
4. Section 2.3 of [FIS], Problem 3.
5. Section 2.3 of [FIS], Problem $4(a, b)$.
6. Section 2.4 of [FIS], Problem 1.
7. Suppose A and B are invertible $n \times n$ matrices.
(a) Prove that $(A B)^{-1}=B^{-1} A^{-1}$.
(b) Prove that $\left(A^{t}\right)^{-1}=\left(A^{-1}\right)^{t}$
8. Prove Theorem 2.21 of [FIS]. This shows that any finite dimensional vector space V of dimension n is isomorphic to \mathbb{R}^{n}.
9. (a) Let A and B be $n \times n$ matrices such that $A B$ is invertible. Prove that both A and B are invertible.
(b) Give an example of two noninvertible matrices whose product is invertible.
(c) Prove or give a counterexample: If A and B are nonzero $n \times n$ matrices with $A B$ the zero matrix then A is not invertible.
10. Find the inverse of the following matrix, and check your answer two different ways.

$$
A=\left(\begin{array}{rrr}
4 & -2 & -5 \\
-4 & 1 & 4 \\
-3 & 1 & 3
\end{array}\right)
$$

