Math 416: HW 8 due Friday, April 8, 2016.

Webpage: http://dunfield.info/416
Office hours: I have my usual office hours the week of March 28: Mon 3:30-4:30, Wed 11-12, Thur 3:30-4:30, and by appointment. My office is 378 Altgeld Hall.

Problems:

1. Let \mathbb{C} denote the field of complex numbers, as discussed in detail in Appendix D of [FIS]. As with any field, we can consider vector spaces, linear transformations, and matrices over \mathbb{C} rather than over our usual field \mathbb{R}.
(a) The complex numbers \mathbb{C} can be viewed as a vector space over either \mathbb{C} or \mathbb{R} with the usual scalar multiplication. Prove that \mathbb{C} has dimension 1 as a vector space over \mathbb{C} but has dimension 2 as a vector space over \mathbb{R}. In each case, give an explicit basis.
(b) Since \mathbb{R} is a subset of \mathbb{C}, if V is a vector space over \mathbb{C} then it is also a vector space over \mathbb{R} : just use the same scalar multiplication but restricted to scalars in \mathbb{R}. If V has dimension n as a vector space over \mathbb{C}, prove that it has dimension $2 n$ as a vector space over \mathbb{R}. Hint: Use Theorem 2.19 from [FIS] to reduce to the case where V is just \mathbb{C}^{n}.
(c) Diagonalize the following matrices over \mathbb{C} by giving a $Q \in M_{2 \times 2}(\mathbb{C})$ so that $Q^{-1} A Q$ is diagonal.

$$
A=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad B=\left(\begin{array}{cc}
0 & -1 \\
1 & 1
\end{array}\right)
$$

2. Section 5.1 of [FIS], Problem 1.
3. Section 5.2 of [FIS], Problem 1.
4. Section 5.2 of [FIS], Problem 2, parts (e) and (g).
5. Section 5.2 of [FIS], Problem 3, parts (a) and (d).
6. Prove that similar matrices have the same characteristic polynomial.
7. Section 5.2 of [FIS], Problem 7.
8. If A is a square matrix prove that A and A^{t} have the same eigenvalues. Do they have the same eigenvectors? Either prove they do, or give a counterexample.
9. Suppose that A in $M_{n \times n}(\mathbb{R})$ has two distinct eigenvalues λ_{1} and λ_{2}, and that $\operatorname{dim}\left(E_{\lambda_{1}}\right)=n-1$. Prove that A is diagonalizable.
10. Section 5.3 of [FIS], Problem 6.
