Math 418: HW 4 due Wednesday, February 23, 2022.

Webpage: http://dunfield.info/418

Office hours: Monday and Tuesday from 1:30–2:30pm; other times possible by appointment.

- 1. Let K/F be an algebraic extension. Suppose *R* is a *subring* contained in *K* which contains *F*. Prove that *R* is actually a *subfield* of *K*. Hint: First show that *R* is a vector space over *F*.
- 2. Prove that $\alpha = \cos(2\pi/5)$ is a constructable number. Use this to show that the regular 5-gon is constructable by straightedge and compass.
- 3. Find the splitting field *K* of $x^4 2$ over \mathbb{Q} . What is $[K : \mathbb{Q}]$?
- 4. Find the splitting field *K* of $x^4 + x^2 + 1$ over \mathbb{Q} . What is $[K : \mathbb{Q}]$?
- 5. Suppose K/F is the splitting field for a polynomial $f(x) \in F[x]$. Let $g(x) \in F[x]$ be irreducible. Show that if g has a root in K then it splits completely in K[x].

Hint: Consider the splitting field M/K of g(x), where g is viewed as an element of K[x]. If $\alpha \in M$ is a root of g, first show that $K(\alpha)$ is the splitting field of f(x) over $F(\alpha)$. Now try to use the uniqueness up to isomorphism parts of Theorems 8 and 27 in Chapter 13 of our textbook.