Math 418: HW 4 due Wednesday, February 23, 2022.

Webpage: http://dunfie1d.info/418
Office hours: Monday and Tuesday from 1:30-2:30pm; other times possible by appointment.

1. Let K / F be an algebraic extension. Suppose R is a subring contained in K which contains F. Prove that R is actually a subfield of K. Hint: First show that R is a vector space over F.
2. Prove that $\alpha=\cos (2 \pi / 5)$ is a constructable number. Use this to show that the regular 5 -gon is constructable by straightedge and compass.
3. Find the splitting field K of $x^{4}-2$ over \mathbb{Q}. What is [$K: \mathbb{Q}$]?
4. Find the splitting field K of $x^{4}+x^{2}+1$ over \mathbb{Q}. What is $[K: \mathbb{Q}]$?
5. Suppose K / F is the splitting field for a polynomial $f(x) \in F[x]$. Let $g(x) \in F[x]$ be irreducible. Show that if g has a root in K then it splits completely in $K[x]$.

Hint: Consider the splitting field M / K of $g(x)$, where g is viewed as an element of $K[x]$. If $\alpha \in M$ is a root of g, first show that $K(\alpha)$ is the splitting field of $f(x)$ over $F(\alpha)$. Now try to use the uniqueness up to isomorphism parts of Theorems 8 and 27 in Chapter 13 of our textbook.

