Math 418: HW 6 due Friday, March 25, 2022.

Webpage: http://dunfield.info/418

Office hours: Are special as this assignment is due on a Friday:

- Friday, March 11 at 11.
- Wednesday, March 23 at 1:30.
- Thursday, March 24 at 1:30.

The first five problems can be done using just what has been covered in class through Wednesday, March 9. Problem 6 requires the Fundamental Theorem of Galois Theory, which will stated at the end of lecture on March 21.

- 1. For $K = \mathbb{Q}(\sqrt[4]{2})$ and $F = \mathbb{Q}(\sqrt{2})$, explicitly determine all automorphisms of K/F.
- 2. Let *k* be a field, and L = k(t) corresponding field of rational functions.
 - (a) Prove that there is a unique $\sigma \in Aut(L/k)$ with $\sigma(t) = t + 1$. Hint: Is t + 1 algebraic or transcendental over k?
 - (b) Find the fixed field *F* of σ , i.e. compute $L_{\langle \sigma \rangle}$.
- 3. Determine the minimal polynomial over \mathbb{Q} of $\gamma = 1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 4. Consider $K = \mathbb{Q}(\sqrt[8]{2}, i)$ from Example 3 of Section 14.2, and let $F_1 = \mathbb{Q}(i)$, $F_2 = \mathbb{Q}(\sqrt{2})$, and $F_3 = \mathbb{Q}(i\sqrt{2})$. Show that $\operatorname{Aut}(K/F_1) \cong Z_8$, $\operatorname{Aut}(K/F_2) \cong D_8$, and $\operatorname{Aut}(K/F_3) \cong Q_8$, where the groups are given in the notation of Section 5.3.
- 5. Suppose *K* is the splitting field over \mathbb{Q} of a cubic polynomial $f(x) \in \mathbb{Q}[x]$. Show that if $Gal(K/\mathbb{Q})$ is the cyclic group of order 3, then all the roots of *f* are real.
- 6. Let *F* be a field of characteristic \neq 2.
 - (a) Suppose $K = F(\sqrt{D_1}, \sqrt{D_2})$ for D_1 and D_2 in F where none of D_1 , D_2 , or D_1D_2 is a square in F. Prove that K/F is a Galois extension with Gal(K/F) isomorphic to the Klein 4-group.
 - (b) Conversely, suppose K/F is a Galois extension with Gal(K/F) isomorphic to the Klein 4-group. Prove that $K = F(\sqrt{D_1}, \sqrt{D_2})$ for D_1 and D_2 in F where none of D_1 , D_2 , or D_1D_2 is a square in F.