Math 418: Takehome 1 due Wednesday, February 16, 2022.

Disclaimer, Terms, and Conditions: You may not discuss the exam with anyone except myself. You may only consult the following:

- The beloved(?) text, Dummit and Foote's Abstract Algebra.
- Your class notes and returned HW sets.
- My online class notes and HW solutions.

You can use any result in Chapters 7-12 and Sections 13.1-13.2 of Dummit and Foote, even if I didn't cover it in class. You can also use the result of any HW problem that was assigned, whether or not you did it.

Office hours: While discussion of these specific problems will be limited to clarifying their statements, I will be happy to answer any broader questions about the course material during my usual office hours (Monday and Tuesday from 1:30-2:30pm), extra office hour (Friday Feb 11, 10:00am), or by appointment.

1. Let F be a field. Consider the ring $R=F[[t]]$ of formal power series in t, namely things of the form

$$
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1} t+a_{2} t^{2}+\cdots \quad \text { where } a_{n} \in F
$$

Here "formal" means the above "sum" is really just an infinite list of elements of F; there's no notion of convergence involved. Elements of R are added term by term, and multiplication is as if they were polynomials. More precisely

$$
\sum_{n=0}^{\infty} a_{n} t^{n} \times \sum_{n=0}^{\infty} b_{n} t^{n}=\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} a_{k} b_{n-k}\right) t^{n}
$$

It is clear that R is a commutative ring with 1. It is different from the field of formal Laurent series $F((t))$ where a finite number of negative exponents of t are allowed.
(a) The units of R are precisely the α where the constant term $a_{0} \neq 0$. For example, with $F=\mathbb{Q}$, the inverse of $1-t$ is $1+t+t^{2}+t^{3}+t^{4}+\cdots$.
For the field $F=\mathbb{F}_{2}=\mathbb{Z} / 2 \mathbb{Z}$, find the multiplicative inverse of $1+t+t^{2}$.
(b) Prove that R is a Euclidean domain with respect to the norm $N(\alpha)=n$ if a_{n} is the first term of α that is non-zero. (If $F=\mathbb{C}$ and the power series converges near $t=0$, then this norm is just the order of zero of the corresponding function at 0 .)
(c) In the polynomial ring $R[x]$, prove that $x^{n}-t$ is irreducible.
2. Let $R=\mathbb{Z}[i]$.
(a) Let $\pi \in R$ be irreducible. Consider the ideals $I_{n}=\left(\pi^{n}\right)$. Prove that $R /(\pi) \cong I_{n} / I_{n+1}$ as additive abelian groups. Hint: the isomorphism is multiplication by π^{n}.
(b) Again for irreducible π, prove that $\left|R /\left(\pi^{n}\right)\right|=|R /(\pi)|^{n}$. Here $|\cdot|$ denotes the number of elements in a finite set. (This is a key step in proving that for any $\pi \in R$ that $|R /(\pi)|=$ $N(\pi)=|\pi|^{2}$.)
(c) For $\pi=1+i$, are $R /\left(\pi^{3}\right)$ and $\mathbb{Z} / 8 \mathbb{Z}$ isomorphic as rings?
3. Suppose F is a field with $\operatorname{char}(F) \neq 2$. Let α and β be elements of F, neither of which is a square in F.
(a) Prove that $K=F(\sqrt{\alpha}, \sqrt{\beta})$ has degree 4 over F if $\alpha \beta$ is not a square in F.
(b) What is $[K: F]$ when $\alpha \beta$ is a square in F ? Prove your answer.
4. Suppose $K=\mathbb{Q}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ where α_{i}^{2} is in \mathbb{Q} for all i. Prove that $\sqrt[3]{7}$ is not in K.
5. Consider a field extension K / F where $[K: F]=n$. Recall from class on February 9 that for each $\gamma \in K$ we get an F-linear transformation $T_{\gamma}: K \rightarrow K$ defined by $T_{\gamma}(\alpha)=\gamma \alpha$. Let $M_{n}(F)$ denote the ring of $n \times n$ matrices with entries in F.
(a) Let $A \in M_{n}(F)$ be the matrix of T_{γ} with respect to some basis $\mathcal{B}=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$. Prove that γ is a root of the characteristic polynomial of A. (See Chapter 11 of Dummitt and Foote for a review of linear algebra. The characteristic polynomial is covered in Section 12.2.)
(b) Part (a) lets us compute a monic polynomial in $F[x]$ of degree n that has γ as a root. Use this to find a monic polynomial in $\mathbb{Q}[x]$ of degree 3 satisfied by $\gamma=1+\sqrt[3]{2}+\sqrt[3]{4}$.

