Math 418: Takehome 2 due Wednesday, April 20, 2022.

Disclaimer, Terms, and Conditions: You may not discuss the exam with anyone except myself. You may only consult the following:

- The beloved(?) text, Dummit and Foote's Abstract Algebra.
- Cox, Little, and O'Shea, Ideals, Varieties, and Algorithms.
- Your class notes and returned HW sets.
- My online class notes and HW solutions.

You can use any result in chapters 14-15 of Dummit and Foote, even if I didn't cover it in class. You can also use the result of any HW problem that was assigned, whether or not you did it. While I believe all the questions are stated correctly, please contact me if you think something is fishy.

Office hours: While discussion of these specific problems will be limited to clarifying their statements, I will be happy to answer any broader questions about the course material durning my special office hour, Friday, April 15 at 4 pm . There will be no office hours Monday, April 18 or Tuesday, April 19.

1. Consider the cyclotomic field $K=\mathbb{Q}\left(\zeta_{n}\right)$ with $n \geq 3$ and let $G=\operatorname{Gal}(K / \mathbb{Q})$.
(a) Let $\tau \in G$ be the restriction of complex conjugation. Find the element that τ corresponds to under the isomorphism $G \cong(\mathbb{Z} / n \mathbb{Z})^{\times}$.
(b) Let $K^{+}=K \cap \mathbb{R}$. Prove that $K^{+}=\mathbb{Q}(\alpha)$ where $\alpha=\zeta_{n}+\zeta_{n}^{-1}$.
2. Find the Galois group of $x^{4}-7$ over \mathbb{Q} explicitly as a permutation group on the roots

$$
\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}=\{\sqrt[4]{7},-\sqrt[4]{7}, \sqrt[4]{7} i,-\sqrt[4]{7} i\}
$$

Clarification: Your answer should both give the isomorphism type of $\operatorname{Gal}(K / \mathbb{Q})$ and identify the explicit subgroup of $S_{4}=\operatorname{SymmetricGroup}\left(\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}\right)$ which is its image under the $\operatorname{map} \operatorname{Gal}(K / \mathbb{Q}) \rightarrow S_{4}$.
3. (a) For $I=\left(x^{2}+1\right) \subset \mathbb{R}[x]$, prove that I is maximal and that $\mathbf{V}(I)=\emptyset$.
(b) Suppose that $I \subset \mathbb{R}[x]$ is maximal. Show that $\mathbf{V}(I)$ is either empty or a single point.
4. Let $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$.
(a) If $f \in R$ is an irreducible polynomial prove that the variety $\mathbf{V}(f) \subset \mathbb{C}^{n}$ is irreducible.
(b) If $I \subset R$ is a proper ideal, prove that its radical is the intersection of all maximal ideals containing I.
5. Let V be an algebraic variety in k^{n}, and set $I=\mathbf{I}(V)$. Recall the coordinate ring of V is

$$
\begin{aligned}
k[V] & =\left\{f: V \rightarrow k \mid f \text { is the restriction of a polynomial in } k\left[x_{1}, \ldots, x_{n}\right] .\right\} \\
& =k\left[x_{1}, \ldots, x_{n}\right] / I
\end{aligned}
$$

In particular, two elements of $k[V]$ are the same if they agree at every point of V, even if nominally they come from different polynomials.

The ring $k[V]$ contains k as the subring of constant functions, coming from the polynomials with only a constant term. Thus it is a vector space over k. Prove that the following are equivalent.
(a) V is a finite set of points in k^{n}.
(b) $k[V]$ is finite-dimensional as a k-vector space.

Hints: For $(\mathrm{a}) \Rightarrow(\mathrm{b})$ consider $k[V]$ as a subspace of the vector space of all functions $f: V \rightarrow k$. For $(\mathrm{b}) \Rightarrow(\mathrm{a})$, for each coordinate, try to show that the set $\left\{a_{i} \mid\left(a_{1}, \ldots, a_{n}\right) \in V\right\}$ is finite.

