1. Let $K=\mathbb{Q}(\sqrt{3}, \sqrt{7})$.
(a) Use Galois theory to prove that $\alpha=\sqrt{3}+\sqrt{7}$ is a primitive element for K / \mathbb{Q}, i.e. that $K=\mathbb{Q}(\alpha)$. (6 points)
(b) Consider the \mathbb{Q}-linear transformation $T: K \rightarrow K$ where $T(\beta)=\alpha \cdot \beta$. Give the matrix A of T with respect to the \mathbb{Q}-basis $\{1, \sqrt{3}, \sqrt{7}, \sqrt{21}\}$ of K. (2 points)
(c) Describe how you could use the marix A to find express α^{-1} as $a+b \sqrt{3}+c \sqrt{7}+d \sqrt{21}$, where $a, b, c, d \in \mathbb{Q} . \quad(2$ points)
2. Let $\mathbb{Q} \subset K \subset \mathbb{C}$, where K / \mathbb{Q} is a finite Galois extension. Let $\tau \in \operatorname{Aut}(\mathbb{C})$ by complex conjugation. Prove or disprove: $\tau(K)=K$ and so τ gives an element of $\operatorname{Gal}(K / \mathbb{Q})$. (8 points)
3. Let R be a principal ideal domain.
(a) If α is an irreducible element of R, prove that the ideal $I=(\alpha)$ is maximal. (4 points)
(b) Prove that any proper ideal I of R is contained in a maximal ideal. (6 points)
(c) Does (a) remain true if R is just a UFD? Prove your answer. (2 points)
4. Consider the cyclotomic field $K=\mathbb{Q}(\zeta)$ where $\zeta=e^{2 \pi i / 5}$. We know K / \mathbb{Q} is Galois with group $G \cong(\mathbb{Z} / 5 \mathbb{Z})^{\times}$.
(a) What is the minimal polynomial of ζ over \mathbb{Q} ? (2 points)
(b) How many subfields L of K are there with $[L: \mathbb{Q}]=2$? (2 points)
(c) Let $\sigma \in G$ send $\zeta \mapsto \zeta^{2}$. Find the corresponding fixed field $K_{\langle\sigma\rangle}$. (4 points)
(d) Find the minimal polynomial of $\zeta^{2}+\zeta^{3}$ over \mathbb{Q}. Your answer should not involve ζ. (4 points)
5. Let F be a field of characteristic 0 . Let K be the splitting field of an irreducible cubic $f(x) \in F[x]$. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in K$ be the roots of f, and suppose that $G=\operatorname{Gal}(K / F)$ is all of S_{3}.
(a) Show that $F=\mathbb{Q}$ and $f(x)=x^{3}+x+1$ is an example of this situation, i.e. that f is irreducible in $\mathbb{Q}[x]$ and $G=S_{3}$. (4 points)
(b) Returning to the general case, for each j find the subgroup of G that corresponds to $F\left(\alpha_{j}\right)$. (2 points)
(c) Prove that $F\left(\alpha_{1}\right) \cap F\left(\alpha_{2}\right)=F$. (2 points)
(d) Prove that $\operatorname{Aut}\left(F\left(\alpha_{1}\right) / F\right)$ is trivial. (4 points)
(e) Consider $\beta=\alpha_{1} \alpha_{2}^{2}+\alpha_{2} \alpha_{3}^{2}+\alpha_{3} \alpha_{1}^{2}$. Prove that $K \neq F(\beta)$. (2 points)
6. Consider the plane curve $X=\mathbf{V}\left(x^{2}-y^{2}-1\right) \subset \mathbb{R}^{2}$.
(a) Prove that X is smooth, and draw a picture of it. (4 points)
(b) Let \bar{X} be the corresponding curve in $\mathbb{P}_{\mathbb{R}}^{2}$. Find the defining equation for \bar{X} in $\mathbb{R}[x, y, z]$, and find all the points in $\bar{X}-X$, i.e. all points at infinity. (2 points)
(c) Explain why your answers in (a) and (b) are consistent with the view that $\mathbb{P}_{\mathbb{R}}^{2}$ is \mathbb{R}^{2} plus one point for each family of parallel lines in \mathbb{R}^{2}. (2 points)
(d) What is the topology of \bar{X} ? What about if we replace with \mathbb{R} with \mathbb{C} ? You do not need to justify your answer, but should draw pictures. (2 points)
7. Let V be the plane curve $\mathbf{V}\left(x^{2}-y^{2}-1\right) \subset \mathbb{C}^{2}$, which is irreducible. Let $K=\mathbb{C}(V)$ be the function field.
(a) Consider the rational function on V given by

$$
f=\frac{x^{2}-y-1}{y-1} \in K
$$

Prove that $\operatorname{dom}(f)=V$, even though the denominator vanishes at $(\sqrt{2}, 1) \in V . \quad$ (4 points)
(b) Consider $h(x, y)=x$ in $\mathbb{C}[V]$ as a map $V \rightarrow \mathbb{C}$. Let $F=\mathbb{C}(\mathbb{C})=\mathbb{C}(t)$, and consider $h^{*}: F \rightarrow K$ be the induced homomorphism of fields. As this is 1-1, identify F with its image under h^{*}. Describe the extension K / F as $F[u] /(p(u))$ for some irreducible polynomial $p(u) \in F[u]$. (6 points)
(c) Is K / F Galois? If it is, describe how each element of $\operatorname{Gal}(K / F)$ acts on K. (2 points)
8. Throughout, let k be an algebraically closed field.
(a) Suppose $V_{1}, V_{2} \subset k^{n}$ are affine varieties defined by $V_{i}=\mathbf{V}\left(I_{i}\right)$. Prove directly from the definitions that $V_{1} \cup V_{2}=\mathbf{V}\left(I_{1} \cap I_{2}\right)$ (4 points)
(b) Let J_{1} and J_{2} be radical ideals in $k\left[x_{1}, \ldots, x_{n}\right]$. Prove that $I=J_{1} \cap J_{2}$ is also a radical ideal, i.e. that $f^{n} \in I \Rightarrow f \in I$. (2 points)
(c) Show that $\mathbf{I}\left(V_{1} \cup V_{2}\right)=\mathbf{I}\left(V_{1}\right) \cap \mathbf{I}\left(V_{2}\right)$. (4 points)

