1. Let $K = \mathbb{Q}(\sqrt{3}, \sqrt{7})$.

(a) Use Galois theory to prove that $\alpha = \sqrt{3} + \sqrt{7}$ is a primitive element for K/\mathbb{Q} , i.e. that $K = \mathbb{Q}(\alpha)$. **(6 points)**

(b) Consider the Q-linear transformation $T: K \to K$ where $T(\beta) = \alpha \cdot \beta$. Give the matrix A of T with respect to the Q-basis $\{1, \sqrt{3}, \sqrt{7}, \sqrt{21}\}$ of K. **(2 points)**

(c) Describe how you could use the marix *A* to find express α^{-1} as $a + b\sqrt{3} + c\sqrt{7} + d\sqrt{21}$, where $a, b, c, d \in \mathbb{Q}$. (2 points)

2. Let $\mathbb{Q} \subset K \subset \mathbb{C}$, where K/\mathbb{Q} is a finite Galois extension. Let $\tau \in Aut(\mathbb{C})$ by complex conjugation. Prove or disprove: $\tau(K) = K$ and so τ gives an element of $Gal(K/\mathbb{Q})$. (8 points)

- 3. Let *R* be a principal ideal domain.
 - (a) If α is an irreducible element of *R*, prove that the ideal $I = (\alpha)$ is maximal. (4 points)

(b) Prove that any proper ideal *I* of *R* is contained in a maximal ideal. (6 points)

(c) Does (a) remain true if *R* is just a UFD? Prove your answer. (2 points)

- 4. Consider the cyclotomic field $K = \mathbb{Q}(\zeta)$ where $\zeta = e^{2\pi i/5}$. We know K/\mathbb{Q} is Galois with group $G \cong (\mathbb{Z}/5\mathbb{Z})^{\times}$.
 - (a) What is the minimal polynomial of ζ over \mathbb{Q} ? (2 points)
 - (b) How many subfields *L* of *K* are there with $[L : \mathbb{Q}] = 2$? (2 points)
 - (c) Let $\sigma \in G$ send $\zeta \mapsto \zeta^2$. Find the corresponding fixed field $K_{\langle \sigma \rangle}$. (4 points)

(d) Find the minimal polynomial of ζ² + ζ³ over Q. Your answer should not involve ζ. (4 points)

- 5. Let *F* be a field of characteristic 0. Let *K* be the splitting field of an irreducible *cubic* $f(x) \in F[x]$. Let $\alpha_1, \alpha_2, \alpha_3 \in K$ be the roots of *f*, and suppose that G = Gal(K/F) is all of S_3 .
 - (a) Show that $F = \mathbb{Q}$ and $f(x) = x^3 + x + 1$ is an example of this situation, i.e. that f is irreducible in $\mathbb{Q}[x]$ and $G = S_3$. (4 points)

(b) Returning to the general case, for each j find the subgroup of G that corresponds to $F(\alpha_j)$. (2 points)

(c) Prove that $F(\alpha_1) \cap F(\alpha_2) = F$. (2 points)

(d) Prove that $\operatorname{Aut}(F(\alpha_1)/F)$ is trivial. (4 points)

(e) Consider $\beta = \alpha_1 \alpha_2^2 + \alpha_2 \alpha_3^2 + \alpha_3 \alpha_1^2$. Prove that $K \neq F(\beta)$. (2 points)

- 6. Consider the plane curve $X = \mathbf{V}(x^2 y^2 1) \subset \mathbb{R}^2$.
 - (a) Prove that *X* is smooth, and draw a picture of it. (4 points)

(b) Let \overline{X} be the corresponding curve in $\mathbb{P}^2_{\mathbb{R}}$. Find the defining equation for \overline{X} in $\mathbb{R}[x, y, z]$, and find all the points in $\overline{X} - X$, i.e. all points at infinity. (2 points)

(c) Explain why your answers in (a) and (b) are consistent with the view that $\mathbb{P}^2_{\mathbb{R}}$ is \mathbb{R}^2 plus one point for each family of parallel lines in \mathbb{R}^2 . (2 points)

(d) What is the topology of \overline{X} ? What about if we replace with \mathbb{R} with \mathbb{C} ? You do not need to justify your answer, but should draw pictures. **(2 points)**

- 7. Let *V* be the plane curve $\mathbf{V}(x^2 y^2 1) \subset \mathbb{C}^2$, which is irreducible. Let $K = \mathbb{C}(V)$ be the function field.
 - (a) Consider the rational function on *V* given by

$$f = \frac{x^2 - y - 1}{y - 1} \in K$$

Prove that dom(f) = V, even though the denominator vanishes at ($\sqrt{2}$, 1) $\in V$. (4 points)

(b) Consider h(x, y) = x in C[V] as a map V → C. Let F = C(C) = C(t), and consider h*: F → K be the induced homomorphism of fields. As this is 1-1, identify F with its image under h*. Describe the extension K/F as F[u]/(p(u)) for some *irreducible* polynomial p(u) ∈ F[u]. (6 points)

(c) Is K/F Galois? If it is, describe how each element of Gal(K/F) acts on K. (2 points)

- 8. Throughout, let *k* be an algebraically closed field.
 - (a) Suppose $V_1, V_2 \subset k^n$ are affine varieties defined by $V_i = \mathbf{V}(I_i)$. Prove directly from the definitions that $V_1 \cup V_2 = \mathbf{V}(I_1 \cap I_2)$ (4 points)

(b) Let J_1 and J_2 be radical ideals in $k[x_1, ..., x_n]$. Prove that $I = J_1 \cap J_2$ is also a radical ideal, i.e. that $f^n \in I \Rightarrow f \in I$. (2 points)

(c) Show that $I(V_1 \cup V_2) = I(V_1) \cap I(V_2)$. (4 points)