Math 416: HW 3 due Friday, February 9, 2024.

Webpage: http://dunfield.info/416
Office hours: Wednesday 2:30-3:30pm and Thursday 2:00-3:00pm; other times possible by appointment. My office is 378 Altgeld.

Textbooks: In the assignment, the two texts are abbreviated as follows:
[FIS] Freidberg, Insel, Spence, Linear Algebra, 4th or 5th edition, 2002 or 2019.
[B] Breezer, A First Course in Linear Algebra, Version 3.5, 2015.

Problems:

1. (a) Suppose A is an $m \times n$ matrix with $m<n$. Show that the null space $\mathcal{N}(A)$ contains a nonzero vector by an argument involving the reduced row echelon form of A.
(b) Use part (a) to prove that any j vectors in \mathbb{R}^{k} are linearly dependent if $j>k$.
2. (a) Suppose S is a subset of a vector space V. Show that if $v \in V$ is contained in $\operatorname{span}(S)$, then $\operatorname{span}(S)=\operatorname{span}(S \cup\{v\})$.
(b) From problem 2(c) on the last HW, consider $V=\mathbb{R}^{2}$ and $S=\{(x, y) \mid x \geq 0$ and $y \geq x\}$. Use part (a) to give a short proof that $\operatorname{span}(S)=\mathbb{R}^{2}$ by showing that $\operatorname{span}(S)$ contains the vectors $(1,0)$ and $(0,1)$.
3. Let u and v be distinct vectors in a vector space V. Show that $\{u, v\}$ is linearly dependent if and only if one of u or v is a scalar multiple of the other.
4. Either prove or give a counterexample to the following statement: If u_{1}, u_{2}, u_{3} are three vectors in \mathbb{R}^{3} none of which is a scalar multiple of another, then they are linearly independent.
5. In the vector space $\mathcal{F}(\mathbb{R}, \mathbb{R})$ consider the elements $f(t)=\sin (t)$ and $g(t)=\cos (t)$. Is the subset $\{f, g\}$ linearly dependent or linearly independent? Prove your answer.
6. Section 1.6 of [FIS], Problem 1.
7. Section 1.6 of [FIS], Problem 2, parts (a) and (b).
8. Section 1.6 of [FIS], Problem 8.
9. Recall from HW 1 that the subset U of all upper triangular matrices in $M_{n \times n}(\mathbb{R})$ forms a subspace. Find a basis for U and use it to compute the dimension of U.
10. Suppose W is a subspace of a finite-dimensional vector space V. For some $v \in V$ not in W, set $X=\operatorname{span}(W \cup\{v\})$. Prove that $\operatorname{dim}(X)=\operatorname{dim}(W)+1$.
