Math 416: HW 11 due Wednesday, May 1, 2024.

Important note: This assignment is due on Wednesday not Friday.
More important note: This is the last homework assignment of the semester!
Most important note:There will be a combined final exam for sections C13 and D13 of Math 416, which will be held on Thursday, May 9, from 8-11am in 120 Architecture Building. Please notify me immediately if you have another exam in that timeslot.

Webpage: http://dunfield.info/416
Office hours: Here is my schedule for the rest of the semester:

- Monday, April 29, from 2:30-3:30pm.
- Tuesday, April 30, from 2-3pm.
- Tuesday, May 7, from 11:30am-1pm.
- Wedsday, May 8, from 10-11am and 2-3:30pm.

Problems:

1. Let T be a normal operator on a finite-dimensional inner product space V.
(a) Prove that $\mathcal{N}(T)=\mathcal{N}\left(T^{*}\right)$ and $\mathcal{R}(T)=\mathcal{R}\left(T^{*}\right)$.
(b) Prove that the subspaces $\mathcal{N}(T)$ and $\mathcal{R}(T)$ are orthogonal.
(c) Give an example of a (non-normal) linear operator S where $\mathcal{N}(S) \neq \mathcal{N}\left(S^{*}\right)$ and $\mathcal{R}(S) \neq$ $\mathcal{R}\left(S^{*}\right)$.

Hint: Use the following fact that you proved in HW 10: If T is a linear operator on finitedimensional inner product space V, then $\mathcal{R}\left(T^{*}\right)^{\perp}=\mathcal{N}(T)$ and $\mathcal{R}\left(T^{*}\right)=\mathcal{N}(T)^{\perp}$.
2. A matrix $A \in M_{n \times n}(\mathbb{R})$ is Gramian if there is a $B \in M_{n \times n}(\mathbb{R})$ such that $A=B^{t} B$. Prove that A is Gramian if and only if A is symmetric and all of its eigenvalues are non-negative.

Hint: For (\Leftarrow), note that A is diagonalizable via an orthonormal basis $\left\{u_{1}, \ldots, u_{n}\right\}$ where u_{i} is an eigenvector of A with eigenvalue λ_{i}. Consider the linear operator T on \mathbb{R}^{n} where $T\left(u_{i}\right)=\sqrt{\lambda_{i}} u_{i}$. Now take $B=[T]_{\text {std }}$ and check that $A=B^{t} B$.
3. Section 6.5 of [FIS], Problem 11.
4. Section 6.5 of [FIS], Problem 17.
5. Section 6.5 of [FIS], Problem 24.
6. Suppose $A \in M_{3 \times 3}(\mathbb{R})$ is an orthogonal matrix with $\operatorname{det}(A)=1$. (Recall from a prior assignment that any orthogonal matrix has determinant ± 1.) In this problem, you will show L_{A} is rotation about a line W in \mathbb{R}^{3}, where W passes through the origin.
(a) First, show that any (real) eigenvalue of A must be ± 1.
(b) Note that A has at least one eigenvalue since its characteristic polynomial $f(t)$ has odd degree and hence at least one real root λ. In this step, you'll show that 1 is always an eigenvalue. If instead $\lambda=-1$, then $f(t)=(-1-t)\left(t^{2}+b t+c\right)$ for some $b, c \in \mathbb{R}$. Use that $\operatorname{det}(A)=1$ to prove that $c<0$ and hence by the quadratic formula that $f(t)$ splits completely over \mathbb{R}. Now show that the eigenvalues of A are -1 and 1 , with algebraic multiplicies 2 and 1 respectively.
(c) Let v_{1} be an eigenvector for A with eigenvalue 1 , and set $W=\operatorname{span}\left(\left\{v_{1}\right\}\right)$. Prove that L_{A} preserves W^{\perp} and acts on it by an orthogonal transformation.
(d) Use Theorem 6.23 of the text to argue that the action of L_{A} on W^{\perp} is by a rotation. Hint: If instead the restriction was a reflection, find a basis of \mathbb{R}^{3} consisting of eigenvectors for A which shows instead that $\operatorname{det}(A)=-1$.
7. Suppose v_{1}, \ldots, v_{n} are vectors in \mathbb{R}^{n} and let P be the parallelepiped spanned by them. Consider the matrix $G \in M_{n \times n}(\mathbb{R})$ where $G_{i j}=\left\langle v_{i}, v_{j}\right\rangle$. (As usual, the inner product here is just the ordinary dot product.)
(a) Show that G is Gramian.
(b) Show that $\operatorname{det}(G) \geq 0$.
(c) Show that the unsigned volume of P is $\sqrt{\operatorname{det}(G)}$.

In fact, G is usually called the Gram matrix of these vectors.

