Math 277: Exercises for weeks 4-

Last Revised: October 30, 2000

Note: These are just informal and not to be turned in. The difficulty varies widely. These problems will be updated regularly and can be downloaded from the course web page.

The 8-geometries

- 1. For further problems, see Chapters 3 and 4 of Thurston, which has many exercises.
- 2. Show that every isometry of Nil and $\widetilde{SL_2}\mathbb{R}$ is orientation preserving.
- 3. Show that the only closed 3-manifolds which have $S^2 \times \mathbb{R}$ geometries are $S^2 \times S^1$, $\mathbb{R} P^3 \# \mathbb{R} P^3$, $S^2 \tilde{\times} S^1$, and $\mathbb{R} P^2 \times S^1$ (See Thurston Ex. 4.7.1 for an outline of the proof).
- 4. Understand Nilgeometry: Thurston Ex. 3.5.8, 3.8.7.
- 5. Let ϕ be a mapping class of the torus T^2 . Show that the mapping torus of ϕ , the 3-manifold $M_{\phi} = T^2 \times I/\{(x,1) \sim (\phi(x),0)\}$ has a geometric structure, either \mathbb{E}^3 , Nil, or Sol. (See Thurston Ex. 3.8.10 for more).
- 6. Prove that the only non-irreducible closed 3-manifold which has a geometric structure is $\mathbb{R} P^3 \# \mathbb{R} P^3$.
- 7. Calculate the sectional curvatures for $\mathbb{H}^2 \times \mathbb{R}$ and $SL_2\mathbb{R}$. Are they the same?
- 8. Show that any closed 3-manifold with a Sol geometry fibers over a 1-dimensional orbifold with fiber a torus and/or Klein bottle.

Orbifolds

- 1. Enumerate all of the 1-dimensional orbifolds.
- 2. Find all the 2-orifolds with Euler characteristic 0, and thus enumerate the 17 Euclidean wallpaper groups.
- 3. Suppose that X is a smooth n-dimensional orbifold. Show that we can take the charts on X to be of the form U/Γ where U is an open set in \mathbb{R}^n and Γ is a finite subgroup of O(n).
- 4. By the proceeding problem, a nbhd of a point in an n-dimensional orbifold is homeomorphic to the cone on a (n-1)-dimensional spherical orbifold. Use this to show that the underlying space of an orientable 3-orbifold is a manifold, and that the underlying space of non-orientable 3-orbifold is not always a manifold.
- 5. Let Y be an compact orbifold (w/o boundary) which has an (X,G)-geometric structure where (X,G) is a model geometry. Show that the universal cover of Y, \tilde{Y} is a manifold, and that $Y=X/\Gamma$ for some discrete subgroup $\Gamma\subset G$. (Note, this isn't so easy). This implies that the bad 2-dimensional orbifolds do not have metrics of constant curvature +1.

Seifert Fibered Spaces

- 1. Show that the definition of the Euler number of a Seifert Fibered space is independent of all the choices involved, and that the two definitions that I gave agree.
- 2. Let M be Seifert fibered. Show that M contains an incompressible torus unless the Seifert orbifold is an S^2 with 3 or fewer cone points.
- 3. Let *M* be Seifert fibered, and let *S* be an incompressible surface in *M*. Show that *S* can be isotoped to be either *vertical* (a union of fibers) or *horizontal* (transverse to the fibers). (This is in Hatcher's notes if you get stuck).
- 4. Prove that the Bieskorn Spheres:

$$B(p,q,r) = \{(x,y,z) \in \mathbb{C}^3 | x^p + y^q + z^r = 0\} \cap S^5_{\epsilon}$$

are Seifert fibered with three exceptional fibers. Show that the orbifold is a sphere with 3 cone points of orders (p, q, r).

- 5. Show that S^3 has a Seifert fibration over every 2-orbifold with underlying space the S^2 . Is this true for lens spaces as well?
- 6. One can also consider Seifert fibered manifolds with boundary. Show that if M is an orientable S.F. manifold with boundary then the boundary is a union of tori.
- 7. A good example of a S.F. manifold with boundary is the exterior M of the trefoil knot in S^3 , that is $M = S^3 \setminus \text{open nbhd of knot}$:

Show that M is S.F. with base orbifold a disc with cone points of orders 2 and 3 (Note: this is an orbifold with boundary, like a manifold with boundary. The boundary of the disc is not mirrored.) Hint: Take a regular nbhd of the Möbius band shown to get an annulus in M which splits M into two solid tori. Give each of these tori a S.F. structure. Also, show that $\pi_1(M)$ is the free product with amalamagtion $\mathbb{Z} *_{\mathbb{Z}} \mathbb{Z}$ where the center \mathbb{Z} includes as $2\mathbb{Z}$ and $3\mathbb{Z}$ respectively.

If we think of the complement N of the trefoil (= S^3 \ the knot), then this is a S.F. space with non-compact base orbifold a sphere with two cone points and also a point removed. This is a hyperbolic orbifold B of finite volume, namely $\mathbb{H}^2/\mathrm{PSL}_2\mathbb{Z}$. Understand the map from π_N to $pi_1(B)$ (Hint: Recall that $\mathrm{PSL}_2\mathbb{Z} = \mathbb{Z}_2 * \mathbb{Z}_3$.)

Does N have a finite volume $\mathbb{H}^2 \times \mathbb{R}$ structure or a $\widetilde{\mathrm{SL}_2\mathbb{R}}$ structure?