
Math 277: Topology and Geometry of 3-manifolds

Introduction

• This class is about compact 3-manifolds, for example:S3, T 3 = S1× S1× S1, S2× S1, or the
unit tangent bundle to a surface.

Fundamental Goal: Classify all compact 3-manifolds. What does classify mean? The ideal
classification is that of surfaces:

Theorem: Every compact connected 2-manifold without boundary is homeomorphic (or diffeo-
morphic) to one of the following:

– (Orientable) The sphere, the torus or the connected sum of tori.

– (Nonorientable) The projective plane, or a connected sum of proj. planes.

The homeomorphism type of a surface is completely determined by its orientablity and its
Euler characteristic (in other words, its homology) which are easily computable from, say, a
triangulation.

The classification of 3-manifolds may or may not be possible (though it probably is). This
contrasts with dimensions≥ 4 where classification of manifolds is impossible.

• The reason classification is impossible in high dimensions is group theoretic. Finitely presented
groups can’t be classified in any reasonable sense, and for any fixedn ≥ 4 any finitely presented
group isπ1 of somen-manifold. (Proof: For a f.p. groupG build a finite 2-complexK with
π1(K) = G. Now asn + 1 ≥ 5, can embedK in Rn+1. LetM be the boundary of a regular
nbhd ofK. ThenM is a closedn-manifold and, sincen ≥ 4, π1M = π1K = G.) A reason
finitely presented groups can’t be classified is that there is no algorithm which can decide if two
finitely presented groups are isomorphic. In fact, there is no algorithm to decide if a finitely
presented group has any of the following properties: trivial, finite, free, nilpotent or simple.

• This doesn’t mean you can’t say anything about high-dimensional manifolds—in fact high-
dimensional topology (n ≥ 5) is far better understood than low-dimensional topology (n =
3, 4), once you mod out by the fact that it’s impossible. In other words, fix some homotopy type
K to get rid of the group theory and look at

{(M, f) |M is ann-manifold,f : M → K is a homotopy equivalence.}.

moded out by homeomorphism (or if you’re studying smooth manifolds, diffeomorphism). Of-
ten this set can be calculated with homotopy-theoretic methods (stable homotopy groups of
spheres,L-groups, surgery exact sequences...).

• One of the most basic questions in 3-dimensions is unknown:

Poincaré conjecture: LetM be a compact 3-manifold without boundary withπ1M trivial. Then
M is homeomorphic toS3.

For a 3-manifold,π1M trivial is equivalent toM homotopy equivalent toS3. So you have the
generalization:
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Gen. Poincaré conjecture: LetM be a compactn-manifold without boundary homotopy equiv-
alent toSn. ThenM is homeomorphic toSn.

In 1960 Smale proved this was true in dimensionsn ≥ 5. If you replace homeomorphism
by diffeomorphism the Generalized Poincaré Conjecture becomes false. For instance, Milnor
showed thatS7 has 28 distinct differentiable structures (in general, you can calculate the number
of smooth structures onSn using stable homotopy groups of spheres). In dim 4, Freedman
proved the gen. Poincaré around 1980.

• Geometry:

Every surface has a metric of constant curvature. Often these metrics are useful for solving
purely topological problems. As a toy example, letΣ be surface of genus≥ 2 with some
fixed hyperbolic metric. Any isotopy class of simple closed curves inΣ contains a unique
geodesic. If we want to study isotopy classes of curves, it is convenient to look at the geodesic
representatives since any two geodesics loops:

– either the same or meet transversely.

– meet in a minimal number of points (for their isotopy classes).

Here’s a couple of group-theoretic statements aboutG = π1(Σ) whose proofs use the factΣ
has a hyperbolic metric:

1. G is residually finite, that is, the intersection of all its finite-index subgroups is the identity
subgroup.

2. G is subgroup separable, aka LERF. This means that given a subgroupH of G and an
elementg ∈ G − H there exists afinite-indexsubgroupH ′ containingH with g 6∈ H ′.
The proof works by building the surface out of right-angled pentagons and looking at the
induced tiling ofH2.

• It would be nice if all manifolds had metrics of constant curvature, but in higher dimensions,
very few manifolds do. The reason for this is that anyn-manifoldM with a constant curvature
metric is a quotient of one ofSn, En orHn by a group of isometries. So, for example,π2(M) =
0 and hence e.g.S2×S2 orCP2 don’t have such metrics. Also, becauseπ1(M) is a lattice in a
Lie group,π1(M) has solvable word problem. However, many finitely presented groups do not
have solvable word problem.

Could generalize constant curvature to locally homogenous metrics, but still have solvable word
problem.

Around 1980 the theory of 3-manifolds was revolutionized by Thurston’s realization that most
3-manifoldsshouldhave locally homogenous metrics:

Geometrization Conjecture: Any compact 3-manifold can be cut into pieces along spheres
and tori so that each piece can be given one of the 8 geometric structures:S3, E3, H3, S2 × R,
H

2 × R, Nil, Sol, S̃L2R.

As in dimension2, the generic case isH3. If true, this conjecture would be a big step toward
classifying 3-manifolds. For instance, it implies that any 3-manifold group has solvable word
problem, and is residually finite.
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• In dimension2 a surface other thanS2 orRP2 has many constant curvature metrics. It is easy
to see that the torus has a 2-dimensional space of flat metrics. For a surface of genusg ≥ 2,
the dimension of the space of hyperbolic metrics, up to isometry, is6g− 6. In dimension 3, the
same flexibility is true for some geometries likeE3 but in the generic case ofH3 we have:

Mostow Rigidity: LetM ,N be compact hyperbolicn-manifolds withn ≥ 3. Then ifπ1(M) is
isomorphic toπ1(N) thenM andN are isometric.

So for a hyperbolic 3-manifold, geometric invariants such as volume, length of shortest geodesic,
or eigenvalues of the Lapacian are actually topological invariants. Dimension 3 is the unique
dimension where topology and geometry more or less coincide.

Outline

• Topological Foundations:Weeks 1-4. Follows Hatcher.

– Fundamental Goal: Classify compact 3-manifolds. Typical is the Poincaré conjecture:Let
M be a compact 3-manifold without boundary with π1(M) = 1. Then M is homeomor-
phic to S3. Whether this is true is still unknown after a 100 years.

– Examples: Triangulations, Heegaard splittings, and Dehn surgery.

– Categories: Smooth, PL, and Top.

– Connected sum decomposition.

∗ Definitions and examples. Statement of decomposition theorem.

∗ Every smoothS2 in R3 bounds a ball.

∗ Combinatorial minimal surfaces (aka normal surfaces).

∗ Proof of theorem.

∗ How this allows us to avoid the Poincaré conjecture, much of the time.

– Homotopy to geometry (more normal surfaces)

∗ Loop Theorem.

· Incompressible surfaces.

∗ Sphere Theorem: IfM is a 3-manifold andπ2(M) 6= 0 then there is anembedded
2-sphere which is non-trivial inπ2(M).

∗ Consequences: Many 3-manifolds areK(π, 1)’s.

– Normal surfaces and Algorithms for 3-manifolds.

• The Geometry of 3-manifolds:Weeks 4-6. Follows Bonahon, Scott.

– Overview, dimension 2, dimensions> 3. Why dimension 3 is so special.

– The eight 3-dimensional geometries.

– Seifert fibered spaces.

– Hyperbolic 3-manifolds.

– JSJ decomposition theorem (decomposition along tori).
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∗ Special case of knot complements inS3.

– Thurston’s Geometrization Conjecture.

– Consequences of having a geometric structure: properties of the fundamental group.

• Haken 3-manifolds: Weeks 6-9. Follows Aitchison and Rubinstein.

– Definition and examples. Proof that ifM is an irreducible 3-manifold withH1(M,R) 6= 0
thenM is Haken.

– Haken hierarchies, or why Haken 3-manifolds are like surfaces. This leads to a sort of
induction for Haken manifolds, which allows most major questions about them to be an-
swered.

– Topological rigidity for Haken 3-manifolds.

∗ The Borel Conjecture: If twon-manifolds which are bothK(π, 1)’s are homotopy
equivalent, then they are homeomorphic.

∗ Waldhausen’s theorem: Any two Haken 3-manifolds which are homotopy equivalent
are homeomorphic.

∗ Comparison to Mostow Rigidity.

– Weak Geometrization for Haken 3-manifolds.

∗ Large scale geometry of groups and spaces (after Gromov).

∗ Negative curvature in the large, word hyperbolic groups.

∗ Isoperimetric inequalities.

∗ Easy proof that an atoroidal Haken 3-manifold has word hyperbolic fundamental
group. (Thurston proved the stronger statement that such manifolds have hyperbolic
metrics, i.e. Riemannian metrics of constant curvature−1. The proof of Thurston’s
theorem is a lot more difficult.)

∗ Properties of word hyperbolic groups: solving the word problem.

• Consequences of Geometrization for Haken manifolds:Weeks 10-13.

– Knot Theory:

∗ Computing hyperbolic structures in practice (SnapPea).

∗ Solving the homeomorphism problem for hyperbolic 3-manifolds with cusps.

∗ Combined, get practical way to decide if two knots inS3 are the same.

– The Smith Conjecture: Letf be a diffeomorphism ofS3 of finite order (that is,fn is the
identity map for somen). If f has a fixed point, then the fixed point set is a knot (embedded
circle). The Smith conjecture asserts that this knot is unknoted, andf is conjugate to a
rotation inO(4).

– Dehn Surgery:

∗ Examples and general problems.

∗ The Cyclic Surgery Theorem.

4


